Metamath Proof Explorer


Theorem dialss

Description: The value of partial isomorphism A is a subspace of partial vector space A. Part of Lemma M of Crawley p. 120 line 26. (Contributed by NM, 17-Jan-2014) (Revised by Mario Carneiro, 23-Jun-2014)

Ref Expression
Hypotheses dialss.b B = Base K
dialss.l ˙ = K
dialss.h H = LHyp K
dialss.u U = DVecA K W
dialss.i I = DIsoA K W
dialss.s S = LSubSp U
Assertion dialss K HL W H X B X ˙ W I X S

Proof

Step Hyp Ref Expression
1 dialss.b B = Base K
2 dialss.l ˙ = K
3 dialss.h H = LHyp K
4 dialss.u U = DVecA K W
5 dialss.i I = DIsoA K W
6 dialss.s S = LSubSp U
7 eqidd K HL W H X B X ˙ W Scalar U = Scalar U
8 eqid TEndo K W = TEndo K W
9 eqid Scalar U = Scalar U
10 eqid Base Scalar U = Base Scalar U
11 3 8 4 9 10 dvabase K HL W H Base Scalar U = TEndo K W
12 11 eqcomd K HL W H TEndo K W = Base Scalar U
13 12 adantr K HL W H X B X ˙ W TEndo K W = Base Scalar U
14 eqid LTrn K W = LTrn K W
15 eqid Base U = Base U
16 3 14 4 15 dvavbase K HL W H Base U = LTrn K W
17 16 eqcomd K HL W H LTrn K W = Base U
18 17 adantr K HL W H X B X ˙ W LTrn K W = Base U
19 eqidd K HL W H X B X ˙ W + U = + U
20 eqidd K HL W H X B X ˙ W U = U
21 6 a1i K HL W H X B X ˙ W S = LSubSp U
22 1 2 3 14 5 diass K HL W H X B X ˙ W I X LTrn K W
23 1 2 3 5 dian0 K HL W H X B X ˙ W I X
24 simpll K HL W H X B X ˙ W x TEndo K W a I X b I X K HL W H
25 simpr1 K HL W H X B X ˙ W x TEndo K W a I X b I X x TEndo K W
26 simplr K HL W H X B X ˙ W x TEndo K W a I X b I X X B X ˙ W
27 simpr2 K HL W H X B X ˙ W x TEndo K W a I X b I X a I X
28 1 2 3 14 5 diael K HL W H X B X ˙ W a I X a LTrn K W
29 24 26 27 28 syl3anc K HL W H X B X ˙ W x TEndo K W a I X b I X a LTrn K W
30 eqid U = U
31 3 14 8 4 30 dvavsca K HL W H x TEndo K W a LTrn K W x U a = x a
32 24 25 29 31 syl12anc K HL W H X B X ˙ W x TEndo K W a I X b I X x U a = x a
33 32 oveq1d K HL W H X B X ˙ W x TEndo K W a I X b I X x U a + U b = x a + U b
34 3 14 8 tendocl K HL W H x TEndo K W a LTrn K W x a LTrn K W
35 24 25 29 34 syl3anc K HL W H X B X ˙ W x TEndo K W a I X b I X x a LTrn K W
36 simpr3 K HL W H X B X ˙ W x TEndo K W a I X b I X b I X
37 1 2 3 14 5 diael K HL W H X B X ˙ W b I X b LTrn K W
38 24 26 36 37 syl3anc K HL W H X B X ˙ W x TEndo K W a I X b I X b LTrn K W
39 eqid + U = + U
40 3 14 4 39 dvavadd K HL W H x a LTrn K W b LTrn K W x a + U b = x a b
41 24 35 38 40 syl12anc K HL W H X B X ˙ W x TEndo K W a I X b I X x a + U b = x a b
42 33 41 eqtrd K HL W H X B X ˙ W x TEndo K W a I X b I X x U a + U b = x a b
43 3 14 ltrnco K HL W H x a LTrn K W b LTrn K W x a b LTrn K W
44 24 35 38 43 syl3anc K HL W H X B X ˙ W x TEndo K W a I X b I X x a b LTrn K W
45 hllat K HL K Lat
46 45 ad3antrrr K HL W H X B X ˙ W x TEndo K W a I X b I X K Lat
47 eqid trL K W = trL K W
48 1 3 14 47 trlcl K HL W H x a b LTrn K W trL K W x a b B
49 24 44 48 syl2anc K HL W H X B X ˙ W x TEndo K W a I X b I X trL K W x a b B
50 1 3 14 47 trlcl K HL W H x a LTrn K W trL K W x a B
51 24 35 50 syl2anc K HL W H X B X ˙ W x TEndo K W a I X b I X trL K W x a B
52 1 3 14 47 trlcl K HL W H b LTrn K W trL K W b B
53 24 38 52 syl2anc K HL W H X B X ˙ W x TEndo K W a I X b I X trL K W b B
54 eqid join K = join K
55 1 54 latjcl K Lat trL K W x a B trL K W b B trL K W x a join K trL K W b B
56 46 51 53 55 syl3anc K HL W H X B X ˙ W x TEndo K W a I X b I X trL K W x a join K trL K W b B
57 simplrl K HL W H X B X ˙ W x TEndo K W a I X b I X X B
58 2 54 3 14 47 trlco K HL W H x a LTrn K W b LTrn K W trL K W x a b ˙ trL K W x a join K trL K W b
59 24 35 38 58 syl3anc K HL W H X B X ˙ W x TEndo K W a I X b I X trL K W x a b ˙ trL K W x a join K trL K W b
60 1 3 14 47 trlcl K HL W H a LTrn K W trL K W a B
61 24 29 60 syl2anc K HL W H X B X ˙ W x TEndo K W a I X b I X trL K W a B
62 2 3 14 47 8 tendotp K HL W H x TEndo K W a LTrn K W trL K W x a ˙ trL K W a
63 24 25 29 62 syl3anc K HL W H X B X ˙ W x TEndo K W a I X b I X trL K W x a ˙ trL K W a
64 1 2 3 14 47 5 diatrl K HL W H X B X ˙ W a I X trL K W a ˙ X
65 24 26 27 64 syl3anc K HL W H X B X ˙ W x TEndo K W a I X b I X trL K W a ˙ X
66 1 2 46 51 61 57 63 65 lattrd K HL W H X B X ˙ W x TEndo K W a I X b I X trL K W x a ˙ X
67 1 2 3 14 47 5 diatrl K HL W H X B X ˙ W b I X trL K W b ˙ X
68 24 26 36 67 syl3anc K HL W H X B X ˙ W x TEndo K W a I X b I X trL K W b ˙ X
69 1 2 54 latjle12 K Lat trL K W x a B trL K W b B X B trL K W x a ˙ X trL K W b ˙ X trL K W x a join K trL K W b ˙ X
70 46 51 53 57 69 syl13anc K HL W H X B X ˙ W x TEndo K W a I X b I X trL K W x a ˙ X trL K W b ˙ X trL K W x a join K trL K W b ˙ X
71 66 68 70 mpbi2and K HL W H X B X ˙ W x TEndo K W a I X b I X trL K W x a join K trL K W b ˙ X
72 1 2 46 49 56 57 59 71 lattrd K HL W H X B X ˙ W x TEndo K W a I X b I X trL K W x a b ˙ X
73 1 2 3 14 47 5 diaelval K HL W H X B X ˙ W x a b I X x a b LTrn K W trL K W x a b ˙ X
74 73 adantr K HL W H X B X ˙ W x TEndo K W a I X b I X x a b I X x a b LTrn K W trL K W x a b ˙ X
75 44 72 74 mpbir2and K HL W H X B X ˙ W x TEndo K W a I X b I X x a b I X
76 42 75 eqeltrd K HL W H X B X ˙ W x TEndo K W a I X b I X x U a + U b I X
77 7 13 18 19 20 21 22 23 76 islssd K HL W H X B X ˙ W I X S