Metamath Proof Explorer


Theorem dvabase

Description: The ring base set of the constructed partial vector space A are all translation group endomorphisms (for a fiducial co-atom W ). (Contributed by NM, 9-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvabase.h H=LHypK
dvabase.e E=TEndoKW
dvabase.u U=DVecAKW
dvabase.f F=ScalarU
dvabase.c C=BaseF
Assertion dvabase KXWHC=E

Proof

Step Hyp Ref Expression
1 dvabase.h H=LHypK
2 dvabase.e E=TEndoKW
3 dvabase.u U=DVecAKW
4 dvabase.f F=ScalarU
5 dvabase.c C=BaseF
6 eqid EDRingKW=EDRingKW
7 1 6 3 4 dvasca KXWHF=EDRingKW
8 7 fveq2d KXWHBaseF=BaseEDRingKW
9 5 8 eqtrid KXWHC=BaseEDRingKW
10 eqid LTrnKW=LTrnKW
11 eqid BaseEDRingKW=BaseEDRingKW
12 1 10 2 6 11 erngbase KXWHBaseEDRingKW=E
13 9 12 eqtrd KXWHC=E