Metamath Proof Explorer


Theorem dvafplusg

Description: Ring addition operation for the constructed partial vector space A. (Contributed by NM, 9-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvafplus.h H = LHyp K
dvafplus.t T = LTrn K W
dvafplus.e E = TEndo K W
dvafplus.u U = DVecA K W
dvafplus.f F = Scalar U
dvafplus.p + ˙ = + F
Assertion dvafplusg K V W H + ˙ = s E , t E f T s f t f

Proof

Step Hyp Ref Expression
1 dvafplus.h H = LHyp K
2 dvafplus.t T = LTrn K W
3 dvafplus.e E = TEndo K W
4 dvafplus.u U = DVecA K W
5 dvafplus.f F = Scalar U
6 dvafplus.p + ˙ = + F
7 eqid EDRing K W = EDRing K W
8 1 7 4 5 dvasca K V W H F = EDRing K W
9 8 fveq2d K V W H + F = + EDRing K W
10 6 9 syl5eq K V W H + ˙ = + EDRing K W
11 eqid + EDRing K W = + EDRing K W
12 1 2 3 7 11 erngfplus K V W H + EDRing K W = s E , t E f T s f t f
13 10 12 eqtrd K V W H + ˙ = s E , t E f T s f t f