Metamath Proof Explorer


Theorem dvafplusg

Description: Ring addition operation for the constructed partial vector space A. (Contributed by NM, 9-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvafplus.h
|- H = ( LHyp ` K )
dvafplus.t
|- T = ( ( LTrn ` K ) ` W )
dvafplus.e
|- E = ( ( TEndo ` K ) ` W )
dvafplus.u
|- U = ( ( DVecA ` K ) ` W )
dvafplus.f
|- F = ( Scalar ` U )
dvafplus.p
|- .+ = ( +g ` F )
Assertion dvafplusg
|- ( ( K e. V /\ W e. H ) -> .+ = ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) )

Proof

Step Hyp Ref Expression
1 dvafplus.h
 |-  H = ( LHyp ` K )
2 dvafplus.t
 |-  T = ( ( LTrn ` K ) ` W )
3 dvafplus.e
 |-  E = ( ( TEndo ` K ) ` W )
4 dvafplus.u
 |-  U = ( ( DVecA ` K ) ` W )
5 dvafplus.f
 |-  F = ( Scalar ` U )
6 dvafplus.p
 |-  .+ = ( +g ` F )
7 eqid
 |-  ( ( EDRing ` K ) ` W ) = ( ( EDRing ` K ) ` W )
8 1 7 4 5 dvasca
 |-  ( ( K e. V /\ W e. H ) -> F = ( ( EDRing ` K ) ` W ) )
9 8 fveq2d
 |-  ( ( K e. V /\ W e. H ) -> ( +g ` F ) = ( +g ` ( ( EDRing ` K ) ` W ) ) )
10 6 9 syl5eq
 |-  ( ( K e. V /\ W e. H ) -> .+ = ( +g ` ( ( EDRing ` K ) ` W ) ) )
11 eqid
 |-  ( +g ` ( ( EDRing ` K ) ` W ) ) = ( +g ` ( ( EDRing ` K ) ` W ) )
12 1 2 3 7 11 erngfplus
 |-  ( ( K e. V /\ W e. H ) -> ( +g ` ( ( EDRing ` K ) ` W ) ) = ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) )
13 10 12 eqtrd
 |-  ( ( K e. V /\ W e. H ) -> .+ = ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) )