Metamath Proof Explorer


Theorem dvafplusg

Description: Ring addition operation for the constructed partial vector space A. (Contributed by NM, 9-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvafplus.h 𝐻 = ( LHyp ‘ 𝐾 )
dvafplus.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dvafplus.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
dvafplus.u 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
dvafplus.f 𝐹 = ( Scalar ‘ 𝑈 )
dvafplus.p + = ( +g𝐹 )
Assertion dvafplusg ( ( 𝐾𝑉𝑊𝐻 ) → + = ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑓𝑇 ↦ ( ( 𝑠𝑓 ) ∘ ( 𝑡𝑓 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 dvafplus.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dvafplus.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 dvafplus.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
4 dvafplus.u 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
5 dvafplus.f 𝐹 = ( Scalar ‘ 𝑈 )
6 dvafplus.p + = ( +g𝐹 )
7 eqid ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
8 1 7 4 5 dvasca ( ( 𝐾𝑉𝑊𝐻 ) → 𝐹 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) )
9 8 fveq2d ( ( 𝐾𝑉𝑊𝐻 ) → ( +g𝐹 ) = ( +g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) )
10 6 9 syl5eq ( ( 𝐾𝑉𝑊𝐻 ) → + = ( +g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) )
11 eqid ( +g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( +g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) )
12 1 2 3 7 11 erngfplus ( ( 𝐾𝑉𝑊𝐻 ) → ( +g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑓𝑇 ↦ ( ( 𝑠𝑓 ) ∘ ( 𝑡𝑓 ) ) ) ) )
13 10 12 eqtrd ( ( 𝐾𝑉𝑊𝐻 ) → + = ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑓𝑇 ↦ ( ( 𝑠𝑓 ) ∘ ( 𝑡𝑓 ) ) ) ) )