Metamath Proof Explorer


Theorem dvaplusg

Description: Ring addition operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013)

Ref Expression
Hypotheses dvafplus.h 𝐻 = ( LHyp ‘ 𝐾 )
dvafplus.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dvafplus.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
dvafplus.u 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
dvafplus.f 𝐹 = ( Scalar ‘ 𝑈 )
dvafplus.p + = ( +g𝐹 )
Assertion dvaplusg ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑅𝐸𝑆𝐸 ) ) → ( 𝑅 + 𝑆 ) = ( 𝑓𝑇 ↦ ( ( 𝑅𝑓 ) ∘ ( 𝑆𝑓 ) ) ) )

Proof

Step Hyp Ref Expression
1 dvafplus.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dvafplus.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 dvafplus.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
4 dvafplus.u 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
5 dvafplus.f 𝐹 = ( Scalar ‘ 𝑈 )
6 dvafplus.p + = ( +g𝐹 )
7 1 2 3 4 5 6 dvafplusg ( ( 𝐾𝑉𝑊𝐻 ) → + = ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑔𝑇 ↦ ( ( 𝑠𝑔 ) ∘ ( 𝑡𝑔 ) ) ) ) )
8 7 oveqd ( ( 𝐾𝑉𝑊𝐻 ) → ( 𝑅 + 𝑆 ) = ( 𝑅 ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑔𝑇 ↦ ( ( 𝑠𝑔 ) ∘ ( 𝑡𝑔 ) ) ) ) 𝑆 ) )
9 eqid ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑔𝑇 ↦ ( ( 𝑠𝑔 ) ∘ ( 𝑡𝑔 ) ) ) ) = ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑔𝑇 ↦ ( ( 𝑠𝑔 ) ∘ ( 𝑡𝑔 ) ) ) )
10 9 2 tendopl ( ( 𝑅𝐸𝑆𝐸 ) → ( 𝑅 ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑔𝑇 ↦ ( ( 𝑠𝑔 ) ∘ ( 𝑡𝑔 ) ) ) ) 𝑆 ) = ( 𝑓𝑇 ↦ ( ( 𝑅𝑓 ) ∘ ( 𝑆𝑓 ) ) ) )
11 8 10 sylan9eq ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑅𝐸𝑆𝐸 ) ) → ( 𝑅 + 𝑆 ) = ( 𝑓𝑇 ↦ ( ( 𝑅𝑓 ) ∘ ( 𝑆𝑓 ) ) ) )