Metamath Proof Explorer


Theorem dvaplusg

Description: Ring addition operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013)

Ref Expression
Hypotheses dvafplus.h H = LHyp K
dvafplus.t T = LTrn K W
dvafplus.e E = TEndo K W
dvafplus.u U = DVecA K W
dvafplus.f F = Scalar U
dvafplus.p + ˙ = + F
Assertion dvaplusg K V W H R E S E R + ˙ S = f T R f S f

Proof

Step Hyp Ref Expression
1 dvafplus.h H = LHyp K
2 dvafplus.t T = LTrn K W
3 dvafplus.e E = TEndo K W
4 dvafplus.u U = DVecA K W
5 dvafplus.f F = Scalar U
6 dvafplus.p + ˙ = + F
7 1 2 3 4 5 6 dvafplusg K V W H + ˙ = s E , t E g T s g t g
8 7 oveqd K V W H R + ˙ S = R s E , t E g T s g t g S
9 eqid s E , t E g T s g t g = s E , t E g T s g t g
10 9 2 tendopl R E S E R s E , t E g T s g t g S = f T R f S f
11 8 10 sylan9eq K V W H R E S E R + ˙ S = f T R f S f