Metamath Proof Explorer


Theorem dvaplusgv

Description: Ring addition operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013)

Ref Expression
Hypotheses dvafplus.h H = LHyp K
dvafplus.t T = LTrn K W
dvafplus.e E = TEndo K W
dvafplus.u U = DVecA K W
dvafplus.f F = Scalar U
dvafplus.p + ˙ = + F
Assertion dvaplusgv K V W H R E S E G T R + ˙ S G = R G S G

Proof

Step Hyp Ref Expression
1 dvafplus.h H = LHyp K
2 dvafplus.t T = LTrn K W
3 dvafplus.e E = TEndo K W
4 dvafplus.u U = DVecA K W
5 dvafplus.f F = Scalar U
6 dvafplus.p + ˙ = + F
7 1 2 3 4 5 6 dvaplusg K V W H R E S E R + ˙ S = f T R f S f
8 7 fveq1d K V W H R E S E R + ˙ S G = f T R f S f G
9 8 3adantr3 K V W H R E S E G T R + ˙ S G = f T R f S f G
10 simpr3 K V W H R E S E G T G T
11 fveq2 f = G R f = R G
12 fveq2 f = G S f = S G
13 11 12 coeq12d f = G R f S f = R G S G
14 eqid f T R f S f = f T R f S f
15 fvex R G V
16 fvex S G V
17 15 16 coex R G S G V
18 13 14 17 fvmpt G T f T R f S f G = R G S G
19 10 18 syl K V W H R E S E G T f T R f S f G = R G S G
20 9 19 eqtrd K V W H R E S E G T R + ˙ S G = R G S G