Metamath Proof Explorer


Theorem dvafmulr

Description: Ring multiplication operation for the constructed partial vector space A. (Contributed by NM, 9-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvafmul.h H = LHyp K
dvafmul.t T = LTrn K W
dvafmul.e E = TEndo K W
dvafmul.u U = DVecA K W
dvafmul.f F = Scalar U
dvafmul.p · ˙ = F
Assertion dvafmulr K V W H · ˙ = s E , t E s t

Proof

Step Hyp Ref Expression
1 dvafmul.h H = LHyp K
2 dvafmul.t T = LTrn K W
3 dvafmul.e E = TEndo K W
4 dvafmul.u U = DVecA K W
5 dvafmul.f F = Scalar U
6 dvafmul.p · ˙ = F
7 eqid EDRing K W = EDRing K W
8 1 7 4 5 dvasca K V W H F = EDRing K W
9 8 fveq2d K V W H F = EDRing K W
10 6 9 syl5eq K V W H · ˙ = EDRing K W
11 eqid EDRing K W = EDRing K W
12 1 2 3 7 11 erngfmul K V W H EDRing K W = s E , t E s t
13 10 12 eqtrd K V W H · ˙ = s E , t E s t