Metamath Proof Explorer


Theorem dvafmulr

Description: Ring multiplication operation for the constructed partial vector space A. (Contributed by NM, 9-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvafmul.h 𝐻 = ( LHyp ‘ 𝐾 )
dvafmul.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dvafmul.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
dvafmul.u 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
dvafmul.f 𝐹 = ( Scalar ‘ 𝑈 )
dvafmul.p · = ( .r𝐹 )
Assertion dvafmulr ( ( 𝐾𝑉𝑊𝐻 ) → · = ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑠𝑡 ) ) )

Proof

Step Hyp Ref Expression
1 dvafmul.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dvafmul.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 dvafmul.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
4 dvafmul.u 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
5 dvafmul.f 𝐹 = ( Scalar ‘ 𝑈 )
6 dvafmul.p · = ( .r𝐹 )
7 eqid ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
8 1 7 4 5 dvasca ( ( 𝐾𝑉𝑊𝐻 ) → 𝐹 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) )
9 8 fveq2d ( ( 𝐾𝑉𝑊𝐻 ) → ( .r𝐹 ) = ( .r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) )
10 6 9 syl5eq ( ( 𝐾𝑉𝑊𝐻 ) → · = ( .r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) )
11 eqid ( .r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( .r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) )
12 1 2 3 7 11 erngfmul ( ( 𝐾𝑉𝑊𝐻 ) → ( .r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑠𝑡 ) ) )
13 10 12 eqtrd ( ( 𝐾𝑉𝑊𝐻 ) → · = ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑠𝑡 ) ) )