Metamath Proof Explorer


Theorem dvamulr

Description: Ring multiplication operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013)

Ref Expression
Hypotheses dvafmul.h 𝐻 = ( LHyp ‘ 𝐾 )
dvafmul.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dvafmul.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
dvafmul.u 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
dvafmul.f 𝐹 = ( Scalar ‘ 𝑈 )
dvafmul.p · = ( .r𝐹 )
Assertion dvamulr ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑅𝐸𝑆𝐸 ) ) → ( 𝑅 · 𝑆 ) = ( 𝑅𝑆 ) )

Proof

Step Hyp Ref Expression
1 dvafmul.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dvafmul.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 dvafmul.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
4 dvafmul.u 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
5 dvafmul.f 𝐹 = ( Scalar ‘ 𝑈 )
6 dvafmul.p · = ( .r𝐹 )
7 1 2 3 4 5 6 dvafmulr ( ( 𝐾𝑉𝑊𝐻 ) → · = ( 𝑟𝐸 , 𝑠𝐸 ↦ ( 𝑟𝑠 ) ) )
8 7 oveqd ( ( 𝐾𝑉𝑊𝐻 ) → ( 𝑅 · 𝑆 ) = ( 𝑅 ( 𝑟𝐸 , 𝑠𝐸 ↦ ( 𝑟𝑠 ) ) 𝑆 ) )
9 coexg ( ( 𝑅𝐸𝑆𝐸 ) → ( 𝑅𝑆 ) ∈ V )
10 coeq1 ( 𝑟 = 𝑅 → ( 𝑟𝑠 ) = ( 𝑅𝑠 ) )
11 coeq2 ( 𝑠 = 𝑆 → ( 𝑅𝑠 ) = ( 𝑅𝑆 ) )
12 eqid ( 𝑟𝐸 , 𝑠𝐸 ↦ ( 𝑟𝑠 ) ) = ( 𝑟𝐸 , 𝑠𝐸 ↦ ( 𝑟𝑠 ) )
13 10 11 12 ovmpog ( ( 𝑅𝐸𝑆𝐸 ∧ ( 𝑅𝑆 ) ∈ V ) → ( 𝑅 ( 𝑟𝐸 , 𝑠𝐸 ↦ ( 𝑟𝑠 ) ) 𝑆 ) = ( 𝑅𝑆 ) )
14 9 13 mpd3an3 ( ( 𝑅𝐸𝑆𝐸 ) → ( 𝑅 ( 𝑟𝐸 , 𝑠𝐸 ↦ ( 𝑟𝑠 ) ) 𝑆 ) = ( 𝑅𝑆 ) )
15 8 14 sylan9eq ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑅𝐸𝑆𝐸 ) ) → ( 𝑅 · 𝑆 ) = ( 𝑅𝑆 ) )