Metamath Proof Explorer


Theorem dvamulr

Description: Ring multiplication operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013)

Ref Expression
Hypotheses dvafmul.h H=LHypK
dvafmul.t T=LTrnKW
dvafmul.e E=TEndoKW
dvafmul.u U=DVecAKW
dvafmul.f F=ScalarU
dvafmul.p ·˙=F
Assertion dvamulr KVWHRESER·˙S=RS

Proof

Step Hyp Ref Expression
1 dvafmul.h H=LHypK
2 dvafmul.t T=LTrnKW
3 dvafmul.e E=TEndoKW
4 dvafmul.u U=DVecAKW
5 dvafmul.f F=ScalarU
6 dvafmul.p ·˙=F
7 1 2 3 4 5 6 dvafmulr KVWH·˙=rE,sErs
8 7 oveqd KVWHR·˙S=RrE,sErsS
9 coexg RESERSV
10 coeq1 r=Rrs=Rs
11 coeq2 s=SRs=RS
12 eqid rE,sErs=rE,sErs
13 10 11 12 ovmpog RESERSVRrE,sErsS=RS
14 9 13 mpd3an3 RESERrE,sErsS=RS
15 8 14 sylan9eq KVWHRESER·˙S=RS