Metamath Proof Explorer


Theorem dvavbase

Description: The vectors (vector base set) of the constructed partial vector space A are all translations (for a fiducial co-atom W ). (Contributed by NM, 9-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvavbase.h H=LHypK
dvavbase.t T=LTrnKW
dvavbase.u U=DVecAKW
dvavbase.v V=BaseU
Assertion dvavbase KXWHV=T

Proof

Step Hyp Ref Expression
1 dvavbase.h H=LHypK
2 dvavbase.t T=LTrnKW
3 dvavbase.u U=DVecAKW
4 dvavbase.v V=BaseU
5 eqid TEndoKW=TEndoKW
6 eqid EDRingKW=EDRingKW
7 1 2 5 6 3 dvaset KXWHU=BasendxT+ndxfT,gTfgScalarndxEDRingKWndxsTEndoKW,fTsf
8 7 fveq2d KXWHBaseU=BaseBasendxT+ndxfT,gTfgScalarndxEDRingKWndxsTEndoKW,fTsf
9 2 fvexi TV
10 eqid BasendxT+ndxfT,gTfgScalarndxEDRingKWndxsTEndoKW,fTsf=BasendxT+ndxfT,gTfgScalarndxEDRingKWndxsTEndoKW,fTsf
11 10 lmodbase TVT=BaseBasendxT+ndxfT,gTfgScalarndxEDRingKWndxsTEndoKW,fTsf
12 9 11 ax-mp T=BaseBasendxT+ndxfT,gTfgScalarndxEDRingKWndxsTEndoKW,fTsf
13 8 4 12 3eqtr4g KXWHV=T