Metamath Proof Explorer


Theorem dvavbase

Description: The vectors (vector base set) of the constructed partial vector space A are all translations (for a fiducial co-atom W ). (Contributed by NM, 9-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvavbase.h H = LHyp K
dvavbase.t T = LTrn K W
dvavbase.u U = DVecA K W
dvavbase.v V = Base U
Assertion dvavbase K X W H V = T

Proof

Step Hyp Ref Expression
1 dvavbase.h H = LHyp K
2 dvavbase.t T = LTrn K W
3 dvavbase.u U = DVecA K W
4 dvavbase.v V = Base U
5 eqid TEndo K W = TEndo K W
6 eqid EDRing K W = EDRing K W
7 1 2 5 6 3 dvaset K X W H U = Base ndx T + ndx f T , g T f g Scalar ndx EDRing K W ndx s TEndo K W , f T s f
8 7 fveq2d K X W H Base U = Base Base ndx T + ndx f T , g T f g Scalar ndx EDRing K W ndx s TEndo K W , f T s f
9 2 fvexi T V
10 eqid Base ndx T + ndx f T , g T f g Scalar ndx EDRing K W ndx s TEndo K W , f T s f = Base ndx T + ndx f T , g T f g Scalar ndx EDRing K W ndx s TEndo K W , f T s f
11 10 lmodbase T V T = Base Base ndx T + ndx f T , g T f g Scalar ndx EDRing K W ndx s TEndo K W , f T s f
12 9 11 ax-mp T = Base Base ndx T + ndx f T , g T f g Scalar ndx EDRing K W ndx s TEndo K W , f T s f
13 8 4 12 3eqtr4g K X W H V = T