Metamath Proof Explorer


Theorem dvaset

Description: The constructed partial vector space A for a lattice K . (Contributed by NM, 8-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvaset.h H = LHyp K
dvaset.t T = LTrn K W
dvaset.e E = TEndo K W
dvaset.d D = EDRing K W
dvaset.u U = DVecA K W
Assertion dvaset K X W H U = Base ndx T + ndx f T , g T f g Scalar ndx D ndx s E , f T s f

Proof

Step Hyp Ref Expression
1 dvaset.h H = LHyp K
2 dvaset.t T = LTrn K W
3 dvaset.e E = TEndo K W
4 dvaset.d D = EDRing K W
5 dvaset.u U = DVecA K W
6 1 dvafset K X DVecA K = w H Base ndx LTrn K w + ndx f LTrn K w , g LTrn K w f g Scalar ndx EDRing K w ndx s TEndo K w , f LTrn K w s f
7 6 fveq1d K X DVecA K W = w H Base ndx LTrn K w + ndx f LTrn K w , g LTrn K w f g Scalar ndx EDRing K w ndx s TEndo K w , f LTrn K w s f W
8 fveq2 w = W LTrn K w = LTrn K W
9 8 2 eqtr4di w = W LTrn K w = T
10 9 opeq2d w = W Base ndx LTrn K w = Base ndx T
11 eqidd w = W f g = f g
12 9 9 11 mpoeq123dv w = W f LTrn K w , g LTrn K w f g = f T , g T f g
13 12 opeq2d w = W + ndx f LTrn K w , g LTrn K w f g = + ndx f T , g T f g
14 fveq2 w = W EDRing K w = EDRing K W
15 14 4 eqtr4di w = W EDRing K w = D
16 15 opeq2d w = W Scalar ndx EDRing K w = Scalar ndx D
17 10 13 16 tpeq123d w = W Base ndx LTrn K w + ndx f LTrn K w , g LTrn K w f g Scalar ndx EDRing K w = Base ndx T + ndx f T , g T f g Scalar ndx D
18 fveq2 w = W TEndo K w = TEndo K W
19 18 3 eqtr4di w = W TEndo K w = E
20 eqidd w = W s f = s f
21 19 9 20 mpoeq123dv w = W s TEndo K w , f LTrn K w s f = s E , f T s f
22 21 opeq2d w = W ndx s TEndo K w , f LTrn K w s f = ndx s E , f T s f
23 22 sneqd w = W ndx s TEndo K w , f LTrn K w s f = ndx s E , f T s f
24 17 23 uneq12d w = W Base ndx LTrn K w + ndx f LTrn K w , g LTrn K w f g Scalar ndx EDRing K w ndx s TEndo K w , f LTrn K w s f = Base ndx T + ndx f T , g T f g Scalar ndx D ndx s E , f T s f
25 eqid w H Base ndx LTrn K w + ndx f LTrn K w , g LTrn K w f g Scalar ndx EDRing K w ndx s TEndo K w , f LTrn K w s f = w H Base ndx LTrn K w + ndx f LTrn K w , g LTrn K w f g Scalar ndx EDRing K w ndx s TEndo K w , f LTrn K w s f
26 tpex Base ndx T + ndx f T , g T f g Scalar ndx D V
27 snex ndx s E , f T s f V
28 26 27 unex Base ndx T + ndx f T , g T f g Scalar ndx D ndx s E , f T s f V
29 24 25 28 fvmpt W H w H Base ndx LTrn K w + ndx f LTrn K w , g LTrn K w f g Scalar ndx EDRing K w ndx s TEndo K w , f LTrn K w s f W = Base ndx T + ndx f T , g T f g Scalar ndx D ndx s E , f T s f
30 7 29 sylan9eq K X W H DVecA K W = Base ndx T + ndx f T , g T f g Scalar ndx D ndx s E , f T s f
31 5 30 syl5eq K X W H U = Base ndx T + ndx f T , g T f g Scalar ndx D ndx s E , f T s f