Metamath Proof Explorer


Theorem dvaset

Description: The constructed partial vector space A for a lattice K . (Contributed by NM, 8-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvaset.h H=LHypK
dvaset.t T=LTrnKW
dvaset.e E=TEndoKW
dvaset.d D=EDRingKW
dvaset.u U=DVecAKW
Assertion dvaset KXWHU=BasendxT+ndxfT,gTfgScalarndxDndxsE,fTsf

Proof

Step Hyp Ref Expression
1 dvaset.h H=LHypK
2 dvaset.t T=LTrnKW
3 dvaset.e E=TEndoKW
4 dvaset.d D=EDRingKW
5 dvaset.u U=DVecAKW
6 1 dvafset KXDVecAK=wHBasendxLTrnKw+ndxfLTrnKw,gLTrnKwfgScalarndxEDRingKwndxsTEndoKw,fLTrnKwsf
7 6 fveq1d KXDVecAKW=wHBasendxLTrnKw+ndxfLTrnKw,gLTrnKwfgScalarndxEDRingKwndxsTEndoKw,fLTrnKwsfW
8 fveq2 w=WLTrnKw=LTrnKW
9 8 2 eqtr4di w=WLTrnKw=T
10 9 opeq2d w=WBasendxLTrnKw=BasendxT
11 eqidd w=Wfg=fg
12 9 9 11 mpoeq123dv w=WfLTrnKw,gLTrnKwfg=fT,gTfg
13 12 opeq2d w=W+ndxfLTrnKw,gLTrnKwfg=+ndxfT,gTfg
14 fveq2 w=WEDRingKw=EDRingKW
15 14 4 eqtr4di w=WEDRingKw=D
16 15 opeq2d w=WScalarndxEDRingKw=ScalarndxD
17 10 13 16 tpeq123d w=WBasendxLTrnKw+ndxfLTrnKw,gLTrnKwfgScalarndxEDRingKw=BasendxT+ndxfT,gTfgScalarndxD
18 fveq2 w=WTEndoKw=TEndoKW
19 18 3 eqtr4di w=WTEndoKw=E
20 eqidd w=Wsf=sf
21 19 9 20 mpoeq123dv w=WsTEndoKw,fLTrnKwsf=sE,fTsf
22 21 opeq2d w=WndxsTEndoKw,fLTrnKwsf=ndxsE,fTsf
23 22 sneqd w=WndxsTEndoKw,fLTrnKwsf=ndxsE,fTsf
24 17 23 uneq12d w=WBasendxLTrnKw+ndxfLTrnKw,gLTrnKwfgScalarndxEDRingKwndxsTEndoKw,fLTrnKwsf=BasendxT+ndxfT,gTfgScalarndxDndxsE,fTsf
25 eqid wHBasendxLTrnKw+ndxfLTrnKw,gLTrnKwfgScalarndxEDRingKwndxsTEndoKw,fLTrnKwsf=wHBasendxLTrnKw+ndxfLTrnKw,gLTrnKwfgScalarndxEDRingKwndxsTEndoKw,fLTrnKwsf
26 tpex BasendxT+ndxfT,gTfgScalarndxDV
27 snex ndxsE,fTsfV
28 26 27 unex BasendxT+ndxfT,gTfgScalarndxDndxsE,fTsfV
29 24 25 28 fvmpt WHwHBasendxLTrnKw+ndxfLTrnKw,gLTrnKwfgScalarndxEDRingKwndxsTEndoKw,fLTrnKwsfW=BasendxT+ndxfT,gTfgScalarndxDndxsE,fTsf
30 7 29 sylan9eq KXWHDVecAKW=BasendxT+ndxfT,gTfgScalarndxDndxsE,fTsf
31 5 30 eqtrid KXWHU=BasendxT+ndxfT,gTfgScalarndxDndxsE,fTsf