Step |
Hyp |
Ref |
Expression |
1 |
|
dvaset.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dvaset.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dvaset.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dvaset.d |
⊢ 𝐷 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dvaset.u |
⊢ 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
1
|
dvafset |
⊢ ( 𝐾 ∈ 𝑋 → ( DVecA ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ ( { 〈 ( Base ‘ ndx ) , ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑠 ‘ 𝑓 ) ) 〉 } ) ) ) |
7 |
6
|
fveq1d |
⊢ ( 𝐾 ∈ 𝑋 → ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) = ( ( 𝑤 ∈ 𝐻 ↦ ( { 〈 ( Base ‘ ndx ) , ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑠 ‘ 𝑓 ) ) 〉 } ) ) ‘ 𝑊 ) ) |
8 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
9 |
8 2
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) = 𝑇 ) |
10 |
9
|
opeq2d |
⊢ ( 𝑤 = 𝑊 → 〈 ( Base ‘ ndx ) , ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) 〉 = 〈 ( Base ‘ ndx ) , 𝑇 〉 ) |
11 |
|
eqidd |
⊢ ( 𝑤 = 𝑊 → ( 𝑓 ∘ 𝑔 ) = ( 𝑓 ∘ 𝑔 ) ) |
12 |
9 9 11
|
mpoeq123dv |
⊢ ( 𝑤 = 𝑊 → ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) = ( 𝑓 ∈ 𝑇 , 𝑔 ∈ 𝑇 ↦ ( 𝑓 ∘ 𝑔 ) ) ) |
13 |
12
|
opeq2d |
⊢ ( 𝑤 = 𝑊 → 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 = 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑇 , 𝑔 ∈ 𝑇 ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 ) |
14 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) |
15 |
14 4
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) = 𝐷 ) |
16 |
15
|
opeq2d |
⊢ ( 𝑤 = 𝑊 → 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 = 〈 ( Scalar ‘ ndx ) , 𝐷 〉 ) |
17 |
10 13 16
|
tpeq123d |
⊢ ( 𝑤 = 𝑊 → { 〈 ( Base ‘ ndx ) , ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 } = { 〈 ( Base ‘ ndx ) , 𝑇 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑇 , 𝑔 ∈ 𝑇 ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , 𝐷 〉 } ) |
18 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
19 |
18 3
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) = 𝐸 ) |
20 |
|
eqidd |
⊢ ( 𝑤 = 𝑊 → ( 𝑠 ‘ 𝑓 ) = ( 𝑠 ‘ 𝑓 ) ) |
21 |
19 9 20
|
mpoeq123dv |
⊢ ( 𝑤 = 𝑊 → ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑠 ‘ 𝑓 ) ) = ( 𝑠 ∈ 𝐸 , 𝑓 ∈ 𝑇 ↦ ( 𝑠 ‘ 𝑓 ) ) ) |
22 |
21
|
opeq2d |
⊢ ( 𝑤 = 𝑊 → 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑠 ‘ 𝑓 ) ) 〉 = 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ 𝐸 , 𝑓 ∈ 𝑇 ↦ ( 𝑠 ‘ 𝑓 ) ) 〉 ) |
23 |
22
|
sneqd |
⊢ ( 𝑤 = 𝑊 → { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑠 ‘ 𝑓 ) ) 〉 } = { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ 𝐸 , 𝑓 ∈ 𝑇 ↦ ( 𝑠 ‘ 𝑓 ) ) 〉 } ) |
24 |
17 23
|
uneq12d |
⊢ ( 𝑤 = 𝑊 → ( { 〈 ( Base ‘ ndx ) , ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑠 ‘ 𝑓 ) ) 〉 } ) = ( { 〈 ( Base ‘ ndx ) , 𝑇 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑇 , 𝑔 ∈ 𝑇 ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ 𝐸 , 𝑓 ∈ 𝑇 ↦ ( 𝑠 ‘ 𝑓 ) ) 〉 } ) ) |
25 |
|
eqid |
⊢ ( 𝑤 ∈ 𝐻 ↦ ( { 〈 ( Base ‘ ndx ) , ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑠 ‘ 𝑓 ) ) 〉 } ) ) = ( 𝑤 ∈ 𝐻 ↦ ( { 〈 ( Base ‘ ndx ) , ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑠 ‘ 𝑓 ) ) 〉 } ) ) |
26 |
|
tpex |
⊢ { 〈 ( Base ‘ ndx ) , 𝑇 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑇 , 𝑔 ∈ 𝑇 ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , 𝐷 〉 } ∈ V |
27 |
|
snex |
⊢ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ 𝐸 , 𝑓 ∈ 𝑇 ↦ ( 𝑠 ‘ 𝑓 ) ) 〉 } ∈ V |
28 |
26 27
|
unex |
⊢ ( { 〈 ( Base ‘ ndx ) , 𝑇 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑇 , 𝑔 ∈ 𝑇 ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ 𝐸 , 𝑓 ∈ 𝑇 ↦ ( 𝑠 ‘ 𝑓 ) ) 〉 } ) ∈ V |
29 |
24 25 28
|
fvmpt |
⊢ ( 𝑊 ∈ 𝐻 → ( ( 𝑤 ∈ 𝐻 ↦ ( { 〈 ( Base ‘ ndx ) , ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑠 ‘ 𝑓 ) ) 〉 } ) ) ‘ 𝑊 ) = ( { 〈 ( Base ‘ ndx ) , 𝑇 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑇 , 𝑔 ∈ 𝑇 ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ 𝐸 , 𝑓 ∈ 𝑇 ↦ ( 𝑠 ‘ 𝑓 ) ) 〉 } ) ) |
30 |
7 29
|
sylan9eq |
⊢ ( ( 𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻 ) → ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) = ( { 〈 ( Base ‘ ndx ) , 𝑇 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑇 , 𝑔 ∈ 𝑇 ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ 𝐸 , 𝑓 ∈ 𝑇 ↦ ( 𝑠 ‘ 𝑓 ) ) 〉 } ) ) |
31 |
5 30
|
syl5eq |
⊢ ( ( 𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻 ) → 𝑈 = ( { 〈 ( Base ‘ ndx ) , 𝑇 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ 𝑇 , 𝑔 ∈ 𝑇 ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ 𝐸 , 𝑓 ∈ 𝑇 ↦ ( 𝑠 ‘ 𝑓 ) ) 〉 } ) ) |