Metamath Proof Explorer


Theorem dvasca

Description: The ring base set of the constructed partial vector space A are all translation group endomorphisms (for a fiducial co-atom W ). (Contributed by NM, 22-Jun-2014)

Ref Expression
Hypotheses dvasca.h 𝐻 = ( LHyp ‘ 𝐾 )
dvasca.d 𝐷 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
dvasca.u 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
dvasca.f 𝐹 = ( Scalar ‘ 𝑈 )
Assertion dvasca ( ( 𝐾𝑋𝑊𝐻 ) → 𝐹 = 𝐷 )

Proof

Step Hyp Ref Expression
1 dvasca.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dvasca.d 𝐷 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
3 dvasca.u 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
4 dvasca.f 𝐹 = ( Scalar ‘ 𝑈 )
5 eqid ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
6 eqid ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
7 1 5 6 2 3 dvaset ( ( 𝐾𝑋𝑊𝐻 ) → 𝑈 = ( { ⟨ ( Base ‘ ndx ) , ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) , 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑓𝑔 ) ) ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝐷 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑠𝑓 ) ) ⟩ } ) )
8 7 fveq2d ( ( 𝐾𝑋𝑊𝐻 ) → ( Scalar ‘ 𝑈 ) = ( Scalar ‘ ( { ⟨ ( Base ‘ ndx ) , ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) , 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑓𝑔 ) ) ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝐷 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑠𝑓 ) ) ⟩ } ) ) )
9 2 fvexi 𝐷 ∈ V
10 eqid ( { ⟨ ( Base ‘ ndx ) , ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) , 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑓𝑔 ) ) ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝐷 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑠𝑓 ) ) ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) , 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑓𝑔 ) ) ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝐷 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑠𝑓 ) ) ⟩ } )
11 10 lmodsca ( 𝐷 ∈ V → 𝐷 = ( Scalar ‘ ( { ⟨ ( Base ‘ ndx ) , ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) , 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑓𝑔 ) ) ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝐷 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑠𝑓 ) ) ⟩ } ) ) )
12 9 11 ax-mp 𝐷 = ( Scalar ‘ ( { ⟨ ( Base ‘ ndx ) , ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) , 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑓𝑔 ) ) ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝐷 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑠𝑓 ) ) ⟩ } ) )
13 8 4 12 3eqtr4g ( ( 𝐾𝑋𝑊𝐻 ) → 𝐹 = 𝐷 )