Metamath Proof Explorer


Theorem dvaset

Description: The constructed partial vector space A for a lattice K . (Contributed by NM, 8-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvaset.h
|- H = ( LHyp ` K )
dvaset.t
|- T = ( ( LTrn ` K ) ` W )
dvaset.e
|- E = ( ( TEndo ` K ) ` W )
dvaset.d
|- D = ( ( EDRing ` K ) ` W )
dvaset.u
|- U = ( ( DVecA ` K ) ` W )
Assertion dvaset
|- ( ( K e. X /\ W e. H ) -> U = ( { <. ( Base ` ndx ) , T >. , <. ( +g ` ndx ) , ( f e. T , g e. T |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , D >. } u. { <. ( .s ` ndx ) , ( s e. E , f e. T |-> ( s ` f ) ) >. } ) )

Proof

Step Hyp Ref Expression
1 dvaset.h
 |-  H = ( LHyp ` K )
2 dvaset.t
 |-  T = ( ( LTrn ` K ) ` W )
3 dvaset.e
 |-  E = ( ( TEndo ` K ) ` W )
4 dvaset.d
 |-  D = ( ( EDRing ` K ) ` W )
5 dvaset.u
 |-  U = ( ( DVecA ` K ) ` W )
6 1 dvafset
 |-  ( K e. X -> ( DVecA ` K ) = ( w e. H |-> ( { <. ( Base ` ndx ) , ( ( LTrn ` K ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` K ) ` w ) , g e. ( ( LTrn ` K ) ` w ) |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( LTrn ` K ) ` w ) |-> ( s ` f ) ) >. } ) ) )
7 6 fveq1d
 |-  ( K e. X -> ( ( DVecA ` K ) ` W ) = ( ( w e. H |-> ( { <. ( Base ` ndx ) , ( ( LTrn ` K ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` K ) ` w ) , g e. ( ( LTrn ` K ) ` w ) |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( LTrn ` K ) ` w ) |-> ( s ` f ) ) >. } ) ) ` W ) )
8 fveq2
 |-  ( w = W -> ( ( LTrn ` K ) ` w ) = ( ( LTrn ` K ) ` W ) )
9 8 2 eqtr4di
 |-  ( w = W -> ( ( LTrn ` K ) ` w ) = T )
10 9 opeq2d
 |-  ( w = W -> <. ( Base ` ndx ) , ( ( LTrn ` K ) ` w ) >. = <. ( Base ` ndx ) , T >. )
11 eqidd
 |-  ( w = W -> ( f o. g ) = ( f o. g ) )
12 9 9 11 mpoeq123dv
 |-  ( w = W -> ( f e. ( ( LTrn ` K ) ` w ) , g e. ( ( LTrn ` K ) ` w ) |-> ( f o. g ) ) = ( f e. T , g e. T |-> ( f o. g ) ) )
13 12 opeq2d
 |-  ( w = W -> <. ( +g ` ndx ) , ( f e. ( ( LTrn ` K ) ` w ) , g e. ( ( LTrn ` K ) ` w ) |-> ( f o. g ) ) >. = <. ( +g ` ndx ) , ( f e. T , g e. T |-> ( f o. g ) ) >. )
14 fveq2
 |-  ( w = W -> ( ( EDRing ` K ) ` w ) = ( ( EDRing ` K ) ` W ) )
15 14 4 eqtr4di
 |-  ( w = W -> ( ( EDRing ` K ) ` w ) = D )
16 15 opeq2d
 |-  ( w = W -> <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` w ) >. = <. ( Scalar ` ndx ) , D >. )
17 10 13 16 tpeq123d
 |-  ( w = W -> { <. ( Base ` ndx ) , ( ( LTrn ` K ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` K ) ` w ) , g e. ( ( LTrn ` K ) ` w ) |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` w ) >. } = { <. ( Base ` ndx ) , T >. , <. ( +g ` ndx ) , ( f e. T , g e. T |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , D >. } )
18 fveq2
 |-  ( w = W -> ( ( TEndo ` K ) ` w ) = ( ( TEndo ` K ) ` W ) )
19 18 3 eqtr4di
 |-  ( w = W -> ( ( TEndo ` K ) ` w ) = E )
20 eqidd
 |-  ( w = W -> ( s ` f ) = ( s ` f ) )
21 19 9 20 mpoeq123dv
 |-  ( w = W -> ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( LTrn ` K ) ` w ) |-> ( s ` f ) ) = ( s e. E , f e. T |-> ( s ` f ) ) )
22 21 opeq2d
 |-  ( w = W -> <. ( .s ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( LTrn ` K ) ` w ) |-> ( s ` f ) ) >. = <. ( .s ` ndx ) , ( s e. E , f e. T |-> ( s ` f ) ) >. )
23 22 sneqd
 |-  ( w = W -> { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( LTrn ` K ) ` w ) |-> ( s ` f ) ) >. } = { <. ( .s ` ndx ) , ( s e. E , f e. T |-> ( s ` f ) ) >. } )
24 17 23 uneq12d
 |-  ( w = W -> ( { <. ( Base ` ndx ) , ( ( LTrn ` K ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` K ) ` w ) , g e. ( ( LTrn ` K ) ` w ) |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( LTrn ` K ) ` w ) |-> ( s ` f ) ) >. } ) = ( { <. ( Base ` ndx ) , T >. , <. ( +g ` ndx ) , ( f e. T , g e. T |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , D >. } u. { <. ( .s ` ndx ) , ( s e. E , f e. T |-> ( s ` f ) ) >. } ) )
25 eqid
 |-  ( w e. H |-> ( { <. ( Base ` ndx ) , ( ( LTrn ` K ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` K ) ` w ) , g e. ( ( LTrn ` K ) ` w ) |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( LTrn ` K ) ` w ) |-> ( s ` f ) ) >. } ) ) = ( w e. H |-> ( { <. ( Base ` ndx ) , ( ( LTrn ` K ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` K ) ` w ) , g e. ( ( LTrn ` K ) ` w ) |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( LTrn ` K ) ` w ) |-> ( s ` f ) ) >. } ) )
26 tpex
 |-  { <. ( Base ` ndx ) , T >. , <. ( +g ` ndx ) , ( f e. T , g e. T |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , D >. } e. _V
27 snex
 |-  { <. ( .s ` ndx ) , ( s e. E , f e. T |-> ( s ` f ) ) >. } e. _V
28 26 27 unex
 |-  ( { <. ( Base ` ndx ) , T >. , <. ( +g ` ndx ) , ( f e. T , g e. T |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , D >. } u. { <. ( .s ` ndx ) , ( s e. E , f e. T |-> ( s ` f ) ) >. } ) e. _V
29 24 25 28 fvmpt
 |-  ( W e. H -> ( ( w e. H |-> ( { <. ( Base ` ndx ) , ( ( LTrn ` K ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` K ) ` w ) , g e. ( ( LTrn ` K ) ` w ) |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( LTrn ` K ) ` w ) |-> ( s ` f ) ) >. } ) ) ` W ) = ( { <. ( Base ` ndx ) , T >. , <. ( +g ` ndx ) , ( f e. T , g e. T |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , D >. } u. { <. ( .s ` ndx ) , ( s e. E , f e. T |-> ( s ` f ) ) >. } ) )
30 7 29 sylan9eq
 |-  ( ( K e. X /\ W e. H ) -> ( ( DVecA ` K ) ` W ) = ( { <. ( Base ` ndx ) , T >. , <. ( +g ` ndx ) , ( f e. T , g e. T |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , D >. } u. { <. ( .s ` ndx ) , ( s e. E , f e. T |-> ( s ` f ) ) >. } ) )
31 5 30 syl5eq
 |-  ( ( K e. X /\ W e. H ) -> U = ( { <. ( Base ` ndx ) , T >. , <. ( +g ` ndx ) , ( f e. T , g e. T |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , D >. } u. { <. ( .s ` ndx ) , ( s e. E , f e. T |-> ( s ` f ) ) >. } ) )