| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvaset.h |
|- H = ( LHyp ` K ) |
| 2 |
|
elex |
|- ( K e. V -> K e. _V ) |
| 3 |
|
fveq2 |
|- ( k = K -> ( LHyp ` k ) = ( LHyp ` K ) ) |
| 4 |
3 1
|
eqtr4di |
|- ( k = K -> ( LHyp ` k ) = H ) |
| 5 |
|
fveq2 |
|- ( k = K -> ( LTrn ` k ) = ( LTrn ` K ) ) |
| 6 |
5
|
fveq1d |
|- ( k = K -> ( ( LTrn ` k ) ` w ) = ( ( LTrn ` K ) ` w ) ) |
| 7 |
6
|
opeq2d |
|- ( k = K -> <. ( Base ` ndx ) , ( ( LTrn ` k ) ` w ) >. = <. ( Base ` ndx ) , ( ( LTrn ` K ) ` w ) >. ) |
| 8 |
|
eqidd |
|- ( k = K -> ( f o. g ) = ( f o. g ) ) |
| 9 |
6 6 8
|
mpoeq123dv |
|- ( k = K -> ( f e. ( ( LTrn ` k ) ` w ) , g e. ( ( LTrn ` k ) ` w ) |-> ( f o. g ) ) = ( f e. ( ( LTrn ` K ) ` w ) , g e. ( ( LTrn ` K ) ` w ) |-> ( f o. g ) ) ) |
| 10 |
9
|
opeq2d |
|- ( k = K -> <. ( +g ` ndx ) , ( f e. ( ( LTrn ` k ) ` w ) , g e. ( ( LTrn ` k ) ` w ) |-> ( f o. g ) ) >. = <. ( +g ` ndx ) , ( f e. ( ( LTrn ` K ) ` w ) , g e. ( ( LTrn ` K ) ` w ) |-> ( f o. g ) ) >. ) |
| 11 |
|
fveq2 |
|- ( k = K -> ( EDRing ` k ) = ( EDRing ` K ) ) |
| 12 |
11
|
fveq1d |
|- ( k = K -> ( ( EDRing ` k ) ` w ) = ( ( EDRing ` K ) ` w ) ) |
| 13 |
12
|
opeq2d |
|- ( k = K -> <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. = <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` w ) >. ) |
| 14 |
7 10 13
|
tpeq123d |
|- ( k = K -> { <. ( Base ` ndx ) , ( ( LTrn ` k ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` k ) ` w ) , g e. ( ( LTrn ` k ) ` w ) |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. } = { <. ( Base ` ndx ) , ( ( LTrn ` K ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` K ) ` w ) , g e. ( ( LTrn ` K ) ` w ) |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` w ) >. } ) |
| 15 |
|
fveq2 |
|- ( k = K -> ( TEndo ` k ) = ( TEndo ` K ) ) |
| 16 |
15
|
fveq1d |
|- ( k = K -> ( ( TEndo ` k ) ` w ) = ( ( TEndo ` K ) ` w ) ) |
| 17 |
|
eqidd |
|- ( k = K -> ( s ` f ) = ( s ` f ) ) |
| 18 |
16 6 17
|
mpoeq123dv |
|- ( k = K -> ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( LTrn ` k ) ` w ) |-> ( s ` f ) ) = ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( LTrn ` K ) ` w ) |-> ( s ` f ) ) ) |
| 19 |
18
|
opeq2d |
|- ( k = K -> <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( LTrn ` k ) ` w ) |-> ( s ` f ) ) >. = <. ( .s ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( LTrn ` K ) ` w ) |-> ( s ` f ) ) >. ) |
| 20 |
19
|
sneqd |
|- ( k = K -> { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( LTrn ` k ) ` w ) |-> ( s ` f ) ) >. } = { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( LTrn ` K ) ` w ) |-> ( s ` f ) ) >. } ) |
| 21 |
14 20
|
uneq12d |
|- ( k = K -> ( { <. ( Base ` ndx ) , ( ( LTrn ` k ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` k ) ` w ) , g e. ( ( LTrn ` k ) ` w ) |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( LTrn ` k ) ` w ) |-> ( s ` f ) ) >. } ) = ( { <. ( Base ` ndx ) , ( ( LTrn ` K ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` K ) ` w ) , g e. ( ( LTrn ` K ) ` w ) |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( LTrn ` K ) ` w ) |-> ( s ` f ) ) >. } ) ) |
| 22 |
4 21
|
mpteq12dv |
|- ( k = K -> ( w e. ( LHyp ` k ) |-> ( { <. ( Base ` ndx ) , ( ( LTrn ` k ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` k ) ` w ) , g e. ( ( LTrn ` k ) ` w ) |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( LTrn ` k ) ` w ) |-> ( s ` f ) ) >. } ) ) = ( w e. H |-> ( { <. ( Base ` ndx ) , ( ( LTrn ` K ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` K ) ` w ) , g e. ( ( LTrn ` K ) ` w ) |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( LTrn ` K ) ` w ) |-> ( s ` f ) ) >. } ) ) ) |
| 23 |
|
df-dveca |
|- DVecA = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( { <. ( Base ` ndx ) , ( ( LTrn ` k ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` k ) ` w ) , g e. ( ( LTrn ` k ) ` w ) |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( LTrn ` k ) ` w ) |-> ( s ` f ) ) >. } ) ) ) |
| 24 |
22 23 1
|
mptfvmpt |
|- ( K e. _V -> ( DVecA ` K ) = ( w e. H |-> ( { <. ( Base ` ndx ) , ( ( LTrn ` K ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` K ) ` w ) , g e. ( ( LTrn ` K ) ` w ) |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( LTrn ` K ) ` w ) |-> ( s ` f ) ) >. } ) ) ) |
| 25 |
2 24
|
syl |
|- ( K e. V -> ( DVecA ` K ) = ( w e. H |-> ( { <. ( Base ` ndx ) , ( ( LTrn ` K ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` K ) ` w ) , g e. ( ( LTrn ` K ) ` w ) |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( LTrn ` K ) ` w ) |-> ( s ` f ) ) >. } ) ) ) |