| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cdveca |  |-  DVecA | 
						
							| 1 |  | vk |  |-  k | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vw |  |-  w | 
						
							| 4 |  | clh |  |-  LHyp | 
						
							| 5 | 1 | cv |  |-  k | 
						
							| 6 | 5 4 | cfv |  |-  ( LHyp ` k ) | 
						
							| 7 |  | cbs |  |-  Base | 
						
							| 8 |  | cnx |  |-  ndx | 
						
							| 9 | 8 7 | cfv |  |-  ( Base ` ndx ) | 
						
							| 10 |  | cltrn |  |-  LTrn | 
						
							| 11 | 5 10 | cfv |  |-  ( LTrn ` k ) | 
						
							| 12 | 3 | cv |  |-  w | 
						
							| 13 | 12 11 | cfv |  |-  ( ( LTrn ` k ) ` w ) | 
						
							| 14 | 9 13 | cop |  |-  <. ( Base ` ndx ) , ( ( LTrn ` k ) ` w ) >. | 
						
							| 15 |  | cplusg |  |-  +g | 
						
							| 16 | 8 15 | cfv |  |-  ( +g ` ndx ) | 
						
							| 17 |  | vf |  |-  f | 
						
							| 18 |  | vg |  |-  g | 
						
							| 19 | 17 | cv |  |-  f | 
						
							| 20 | 18 | cv |  |-  g | 
						
							| 21 | 19 20 | ccom |  |-  ( f o. g ) | 
						
							| 22 | 17 18 13 13 21 | cmpo |  |-  ( f e. ( ( LTrn ` k ) ` w ) , g e. ( ( LTrn ` k ) ` w ) |-> ( f o. g ) ) | 
						
							| 23 | 16 22 | cop |  |-  <. ( +g ` ndx ) , ( f e. ( ( LTrn ` k ) ` w ) , g e. ( ( LTrn ` k ) ` w ) |-> ( f o. g ) ) >. | 
						
							| 24 |  | csca |  |-  Scalar | 
						
							| 25 | 8 24 | cfv |  |-  ( Scalar ` ndx ) | 
						
							| 26 |  | cedring |  |-  EDRing | 
						
							| 27 | 5 26 | cfv |  |-  ( EDRing ` k ) | 
						
							| 28 | 12 27 | cfv |  |-  ( ( EDRing ` k ) ` w ) | 
						
							| 29 | 25 28 | cop |  |-  <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. | 
						
							| 30 | 14 23 29 | ctp |  |-  { <. ( Base ` ndx ) , ( ( LTrn ` k ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` k ) ` w ) , g e. ( ( LTrn ` k ) ` w ) |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. } | 
						
							| 31 |  | cvsca |  |-  .s | 
						
							| 32 | 8 31 | cfv |  |-  ( .s ` ndx ) | 
						
							| 33 |  | vs |  |-  s | 
						
							| 34 |  | ctendo |  |-  TEndo | 
						
							| 35 | 5 34 | cfv |  |-  ( TEndo ` k ) | 
						
							| 36 | 12 35 | cfv |  |-  ( ( TEndo ` k ) ` w ) | 
						
							| 37 | 33 | cv |  |-  s | 
						
							| 38 | 19 37 | cfv |  |-  ( s ` f ) | 
						
							| 39 | 33 17 36 13 38 | cmpo |  |-  ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( LTrn ` k ) ` w ) |-> ( s ` f ) ) | 
						
							| 40 | 32 39 | cop |  |-  <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( LTrn ` k ) ` w ) |-> ( s ` f ) ) >. | 
						
							| 41 | 40 | csn |  |-  { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( LTrn ` k ) ` w ) |-> ( s ` f ) ) >. } | 
						
							| 42 | 30 41 | cun |  |-  ( { <. ( Base ` ndx ) , ( ( LTrn ` k ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` k ) ` w ) , g e. ( ( LTrn ` k ) ` w ) |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( LTrn ` k ) ` w ) |-> ( s ` f ) ) >. } ) | 
						
							| 43 | 3 6 42 | cmpt |  |-  ( w e. ( LHyp ` k ) |-> ( { <. ( Base ` ndx ) , ( ( LTrn ` k ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` k ) ` w ) , g e. ( ( LTrn ` k ) ` w ) |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( LTrn ` k ) ` w ) |-> ( s ` f ) ) >. } ) ) | 
						
							| 44 | 1 2 43 | cmpt |  |-  ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( { <. ( Base ` ndx ) , ( ( LTrn ` k ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` k ) ` w ) , g e. ( ( LTrn ` k ) ` w ) |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( LTrn ` k ) ` w ) |-> ( s ` f ) ) >. } ) ) ) | 
						
							| 45 | 0 44 | wceq |  |-  DVecA = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( { <. ( Base ` ndx ) , ( ( LTrn ` k ) ` w ) >. , <. ( +g ` ndx ) , ( f e. ( ( LTrn ` k ) ` w ) , g e. ( ( LTrn ` k ) ` w ) |-> ( f o. g ) ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( LTrn ` k ) ` w ) |-> ( s ` f ) ) >. } ) ) ) |