| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cdveca | ⊢ DVecA | 
						
							| 1 |  | vk | ⊢ 𝑘 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vw | ⊢ 𝑤 | 
						
							| 4 |  | clh | ⊢ LHyp | 
						
							| 5 | 1 | cv | ⊢ 𝑘 | 
						
							| 6 | 5 4 | cfv | ⊢ ( LHyp ‘ 𝑘 ) | 
						
							| 7 |  | cbs | ⊢ Base | 
						
							| 8 |  | cnx | ⊢ ndx | 
						
							| 9 | 8 7 | cfv | ⊢ ( Base ‘ ndx ) | 
						
							| 10 |  | cltrn | ⊢ LTrn | 
						
							| 11 | 5 10 | cfv | ⊢ ( LTrn ‘ 𝑘 ) | 
						
							| 12 | 3 | cv | ⊢ 𝑤 | 
						
							| 13 | 12 11 | cfv | ⊢ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) | 
						
							| 14 | 9 13 | cop | ⊢ 〈 ( Base ‘ ndx ) ,  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) 〉 | 
						
							| 15 |  | cplusg | ⊢ +g | 
						
							| 16 | 8 15 | cfv | ⊢ ( +g ‘ ndx ) | 
						
							| 17 |  | vf | ⊢ 𝑓 | 
						
							| 18 |  | vg | ⊢ 𝑔 | 
						
							| 19 | 17 | cv | ⊢ 𝑓 | 
						
							| 20 | 18 | cv | ⊢ 𝑔 | 
						
							| 21 | 19 20 | ccom | ⊢ ( 𝑓  ∘  𝑔 ) | 
						
							| 22 | 17 18 13 13 21 | cmpo | ⊢ ( 𝑓  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑔  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑓  ∘  𝑔 ) ) | 
						
							| 23 | 16 22 | cop | ⊢ 〈 ( +g ‘ ndx ) ,  ( 𝑓  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑔  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑓  ∘  𝑔 ) ) 〉 | 
						
							| 24 |  | csca | ⊢ Scalar | 
						
							| 25 | 8 24 | cfv | ⊢ ( Scalar ‘ ndx ) | 
						
							| 26 |  | cedring | ⊢ EDRing | 
						
							| 27 | 5 26 | cfv | ⊢ ( EDRing ‘ 𝑘 ) | 
						
							| 28 | 12 27 | cfv | ⊢ ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) | 
						
							| 29 | 25 28 | cop | ⊢ 〈 ( Scalar ‘ ndx ) ,  ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) 〉 | 
						
							| 30 | 14 23 29 | ctp | ⊢ { 〈 ( Base ‘ ndx ) ,  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑓  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑔  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑓  ∘  𝑔 ) ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) 〉 } | 
						
							| 31 |  | cvsca | ⊢  ·𝑠 | 
						
							| 32 | 8 31 | cfv | ⊢ (  ·𝑠  ‘ ndx ) | 
						
							| 33 |  | vs | ⊢ 𝑠 | 
						
							| 34 |  | ctendo | ⊢ TEndo | 
						
							| 35 | 5 34 | cfv | ⊢ ( TEndo ‘ 𝑘 ) | 
						
							| 36 | 12 35 | cfv | ⊢ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) | 
						
							| 37 | 33 | cv | ⊢ 𝑠 | 
						
							| 38 | 19 37 | cfv | ⊢ ( 𝑠 ‘ 𝑓 ) | 
						
							| 39 | 33 17 36 13 38 | cmpo | ⊢ ( 𝑠  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑓  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑠 ‘ 𝑓 ) ) | 
						
							| 40 | 32 39 | cop | ⊢ 〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑓  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑠 ‘ 𝑓 ) ) 〉 | 
						
							| 41 | 40 | csn | ⊢ { 〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑓  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑠 ‘ 𝑓 ) ) 〉 } | 
						
							| 42 | 30 41 | cun | ⊢ ( { 〈 ( Base ‘ ndx ) ,  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑓  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑔  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑓  ∘  𝑔 ) ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑓  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑠 ‘ 𝑓 ) ) 〉 } ) | 
						
							| 43 | 3 6 42 | cmpt | ⊢ ( 𝑤  ∈  ( LHyp ‘ 𝑘 )  ↦  ( { 〈 ( Base ‘ ndx ) ,  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑓  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑔  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑓  ∘  𝑔 ) ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑓  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑠 ‘ 𝑓 ) ) 〉 } ) ) | 
						
							| 44 | 1 2 43 | cmpt | ⊢ ( 𝑘  ∈  V  ↦  ( 𝑤  ∈  ( LHyp ‘ 𝑘 )  ↦  ( { 〈 ( Base ‘ ndx ) ,  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑓  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑔  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑓  ∘  𝑔 ) ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑓  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑠 ‘ 𝑓 ) ) 〉 } ) ) ) | 
						
							| 45 | 0 44 | wceq | ⊢ DVecA  =  ( 𝑘  ∈  V  ↦  ( 𝑤  ∈  ( LHyp ‘ 𝑘 )  ↦  ( { 〈 ( Base ‘ ndx ) ,  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑓  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑔  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑓  ∘  𝑔 ) ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑓  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑠 ‘ 𝑓 ) ) 〉 } ) ) ) |