| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvaset.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | elex | ⊢ ( 𝐾  ∈  𝑉  →  𝐾  ∈  V ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑘  =  𝐾  →  ( LHyp ‘ 𝑘 )  =  ( LHyp ‘ 𝐾 ) ) | 
						
							| 4 | 3 1 | eqtr4di | ⊢ ( 𝑘  =  𝐾  →  ( LHyp ‘ 𝑘 )  =  𝐻 ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑘  =  𝐾  →  ( LTrn ‘ 𝑘 )  =  ( LTrn ‘ 𝐾 ) ) | 
						
							| 6 | 5 | fveq1d | ⊢ ( 𝑘  =  𝐾  →  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) | 
						
							| 7 | 6 | opeq2d | ⊢ ( 𝑘  =  𝐾  →  〈 ( Base ‘ ndx ) ,  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) 〉  =  〈 ( Base ‘ ndx ) ,  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) 〉 ) | 
						
							| 8 |  | eqidd | ⊢ ( 𝑘  =  𝐾  →  ( 𝑓  ∘  𝑔 )  =  ( 𝑓  ∘  𝑔 ) ) | 
						
							| 9 | 6 6 8 | mpoeq123dv | ⊢ ( 𝑘  =  𝐾  →  ( 𝑓  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑔  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑓  ∘  𝑔 ) )  =  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∘  𝑔 ) ) ) | 
						
							| 10 | 9 | opeq2d | ⊢ ( 𝑘  =  𝐾  →  〈 ( +g ‘ ndx ) ,  ( 𝑓  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑔  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑓  ∘  𝑔 ) ) 〉  =  〈 ( +g ‘ ndx ) ,  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∘  𝑔 ) ) 〉 ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑘  =  𝐾  →  ( EDRing ‘ 𝑘 )  =  ( EDRing ‘ 𝐾 ) ) | 
						
							| 12 | 11 | fveq1d | ⊢ ( 𝑘  =  𝐾  →  ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 )  =  ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) ) | 
						
							| 13 | 12 | opeq2d | ⊢ ( 𝑘  =  𝐾  →  〈 ( Scalar ‘ ndx ) ,  ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) 〉  =  〈 ( Scalar ‘ ndx ) ,  ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 ) | 
						
							| 14 | 7 10 13 | tpeq123d | ⊢ ( 𝑘  =  𝐾  →  { 〈 ( Base ‘ ndx ) ,  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑓  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑔  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑓  ∘  𝑔 ) ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) 〉 }  =  { 〈 ( Base ‘ ndx ) ,  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∘  𝑔 ) ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 } ) | 
						
							| 15 |  | fveq2 | ⊢ ( 𝑘  =  𝐾  →  ( TEndo ‘ 𝑘 )  =  ( TEndo ‘ 𝐾 ) ) | 
						
							| 16 | 15 | fveq1d | ⊢ ( 𝑘  =  𝐾  →  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 )  =  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) | 
						
							| 17 |  | eqidd | ⊢ ( 𝑘  =  𝐾  →  ( 𝑠 ‘ 𝑓 )  =  ( 𝑠 ‘ 𝑓 ) ) | 
						
							| 18 | 16 6 17 | mpoeq123dv | ⊢ ( 𝑘  =  𝐾  →  ( 𝑠  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑓  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑠 ‘ 𝑓 ) )  =  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑠 ‘ 𝑓 ) ) ) | 
						
							| 19 | 18 | opeq2d | ⊢ ( 𝑘  =  𝐾  →  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑓  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑠 ‘ 𝑓 ) ) 〉  =  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑠 ‘ 𝑓 ) ) 〉 ) | 
						
							| 20 | 19 | sneqd | ⊢ ( 𝑘  =  𝐾  →  { 〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑓  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑠 ‘ 𝑓 ) ) 〉 }  =  { 〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑠 ‘ 𝑓 ) ) 〉 } ) | 
						
							| 21 | 14 20 | uneq12d | ⊢ ( 𝑘  =  𝐾  →  ( { 〈 ( Base ‘ ndx ) ,  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑓  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑔  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑓  ∘  𝑔 ) ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑓  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑠 ‘ 𝑓 ) ) 〉 } )  =  ( { 〈 ( Base ‘ ndx ) ,  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∘  𝑔 ) ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑠 ‘ 𝑓 ) ) 〉 } ) ) | 
						
							| 22 | 4 21 | mpteq12dv | ⊢ ( 𝑘  =  𝐾  →  ( 𝑤  ∈  ( LHyp ‘ 𝑘 )  ↦  ( { 〈 ( Base ‘ ndx ) ,  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑓  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑔  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑓  ∘  𝑔 ) ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑓  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑠 ‘ 𝑓 ) ) 〉 } ) )  =  ( 𝑤  ∈  𝐻  ↦  ( { 〈 ( Base ‘ ndx ) ,  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∘  𝑔 ) ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑠 ‘ 𝑓 ) ) 〉 } ) ) ) | 
						
							| 23 |  | df-dveca | ⊢ DVecA  =  ( 𝑘  ∈  V  ↦  ( 𝑤  ∈  ( LHyp ‘ 𝑘 )  ↦  ( { 〈 ( Base ‘ ndx ) ,  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑓  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑔  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑓  ∘  𝑔 ) ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ,  𝑓  ∈  ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )  ↦  ( 𝑠 ‘ 𝑓 ) ) 〉 } ) ) ) | 
						
							| 24 | 22 23 1 | mptfvmpt | ⊢ ( 𝐾  ∈  V  →  ( DVecA ‘ 𝐾 )  =  ( 𝑤  ∈  𝐻  ↦  ( { 〈 ( Base ‘ ndx ) ,  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∘  𝑔 ) ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑠 ‘ 𝑓 ) ) 〉 } ) ) ) | 
						
							| 25 | 2 24 | syl | ⊢ ( 𝐾  ∈  𝑉  →  ( DVecA ‘ 𝐾 )  =  ( 𝑤  ∈  𝐻  ↦  ( { 〈 ( Base ‘ ndx ) ,  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑓  ∘  𝑔 ) ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑠  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ,  𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 )  ↦  ( 𝑠 ‘ 𝑓 ) ) 〉 } ) ) ) |