Step |
Hyp |
Ref |
Expression |
1 |
|
dvaset.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
elex |
⊢ ( 𝐾 ∈ 𝑉 → 𝐾 ∈ V ) |
3 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( LHyp ‘ 𝑘 ) = ( LHyp ‘ 𝐾 ) ) |
4 |
3 1
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( LHyp ‘ 𝑘 ) = 𝐻 ) |
5 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( LTrn ‘ 𝑘 ) = ( LTrn ‘ 𝐾 ) ) |
6 |
5
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) |
7 |
6
|
opeq2d |
⊢ ( 𝑘 = 𝐾 → 〈 ( Base ‘ ndx ) , ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) 〉 = 〈 ( Base ‘ ndx ) , ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) 〉 ) |
8 |
|
eqidd |
⊢ ( 𝑘 = 𝐾 → ( 𝑓 ∘ 𝑔 ) = ( 𝑓 ∘ 𝑔 ) ) |
9 |
6 6 8
|
mpoeq123dv |
⊢ ( 𝑘 = 𝐾 → ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) ) |
10 |
9
|
opeq2d |
⊢ ( 𝑘 = 𝐾 → 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 = 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 ) |
11 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( EDRing ‘ 𝑘 ) = ( EDRing ‘ 𝐾 ) ) |
12 |
11
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) = ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) ) |
13 |
12
|
opeq2d |
⊢ ( 𝑘 = 𝐾 → 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) 〉 = 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 ) |
14 |
7 10 13
|
tpeq123d |
⊢ ( 𝑘 = 𝐾 → { 〈 ( Base ‘ ndx ) , ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) 〉 } = { 〈 ( Base ‘ ndx ) , ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 } ) |
15 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( TEndo ‘ 𝑘 ) = ( TEndo ‘ 𝐾 ) ) |
16 |
15
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) |
17 |
|
eqidd |
⊢ ( 𝑘 = 𝐾 → ( 𝑠 ‘ 𝑓 ) = ( 𝑠 ‘ 𝑓 ) ) |
18 |
16 6 17
|
mpoeq123dv |
⊢ ( 𝑘 = 𝐾 → ( 𝑠 ∈ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( 𝑠 ‘ 𝑓 ) ) = ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑠 ‘ 𝑓 ) ) ) |
19 |
18
|
opeq2d |
⊢ ( 𝑘 = 𝐾 → 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( 𝑠 ‘ 𝑓 ) ) 〉 = 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑠 ‘ 𝑓 ) ) 〉 ) |
20 |
19
|
sneqd |
⊢ ( 𝑘 = 𝐾 → { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( 𝑠 ‘ 𝑓 ) ) 〉 } = { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑠 ‘ 𝑓 ) ) 〉 } ) |
21 |
14 20
|
uneq12d |
⊢ ( 𝑘 = 𝐾 → ( { 〈 ( Base ‘ ndx ) , ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( 𝑠 ‘ 𝑓 ) ) 〉 } ) = ( { 〈 ( Base ‘ ndx ) , ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑠 ‘ 𝑓 ) ) 〉 } ) ) |
22 |
4 21
|
mpteq12dv |
⊢ ( 𝑘 = 𝐾 → ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( { 〈 ( Base ‘ ndx ) , ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( 𝑠 ‘ 𝑓 ) ) 〉 } ) ) = ( 𝑤 ∈ 𝐻 ↦ ( { 〈 ( Base ‘ ndx ) , ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑠 ‘ 𝑓 ) ) 〉 } ) ) ) |
23 |
|
df-dveca |
⊢ DVecA = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( { 〈 ( Base ‘ ndx ) , ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( 𝑠 ‘ 𝑓 ) ) 〉 } ) ) ) |
24 |
22 23 1
|
mptfvmpt |
⊢ ( 𝐾 ∈ V → ( DVecA ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ ( { 〈 ( Base ‘ ndx ) , ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑠 ‘ 𝑓 ) ) 〉 } ) ) ) |
25 |
2 24
|
syl |
⊢ ( 𝐾 ∈ 𝑉 → ( DVecA ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ ( { 〈 ( Base ‘ ndx ) , ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) , 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( 𝑠 ‘ 𝑓 ) ) 〉 } ) ) ) |