Metamath Proof Explorer


Theorem dvaplusgv

Description: Ring addition operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013)

Ref Expression
Hypotheses dvafplus.h 𝐻 = ( LHyp ‘ 𝐾 )
dvafplus.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dvafplus.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
dvafplus.u 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
dvafplus.f 𝐹 = ( Scalar ‘ 𝑈 )
dvafplus.p + = ( +g𝐹 )
Assertion dvaplusgv ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑅𝐸𝑆𝐸𝐺𝑇 ) ) → ( ( 𝑅 + 𝑆 ) ‘ 𝐺 ) = ( ( 𝑅𝐺 ) ∘ ( 𝑆𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 dvafplus.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dvafplus.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 dvafplus.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
4 dvafplus.u 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
5 dvafplus.f 𝐹 = ( Scalar ‘ 𝑈 )
6 dvafplus.p + = ( +g𝐹 )
7 1 2 3 4 5 6 dvaplusg ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑅𝐸𝑆𝐸 ) ) → ( 𝑅 + 𝑆 ) = ( 𝑓𝑇 ↦ ( ( 𝑅𝑓 ) ∘ ( 𝑆𝑓 ) ) ) )
8 7 fveq1d ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑅𝐸𝑆𝐸 ) ) → ( ( 𝑅 + 𝑆 ) ‘ 𝐺 ) = ( ( 𝑓𝑇 ↦ ( ( 𝑅𝑓 ) ∘ ( 𝑆𝑓 ) ) ) ‘ 𝐺 ) )
9 8 3adantr3 ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑅𝐸𝑆𝐸𝐺𝑇 ) ) → ( ( 𝑅 + 𝑆 ) ‘ 𝐺 ) = ( ( 𝑓𝑇 ↦ ( ( 𝑅𝑓 ) ∘ ( 𝑆𝑓 ) ) ) ‘ 𝐺 ) )
10 simpr3 ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑅𝐸𝑆𝐸𝐺𝑇 ) ) → 𝐺𝑇 )
11 fveq2 ( 𝑓 = 𝐺 → ( 𝑅𝑓 ) = ( 𝑅𝐺 ) )
12 fveq2 ( 𝑓 = 𝐺 → ( 𝑆𝑓 ) = ( 𝑆𝐺 ) )
13 11 12 coeq12d ( 𝑓 = 𝐺 → ( ( 𝑅𝑓 ) ∘ ( 𝑆𝑓 ) ) = ( ( 𝑅𝐺 ) ∘ ( 𝑆𝐺 ) ) )
14 eqid ( 𝑓𝑇 ↦ ( ( 𝑅𝑓 ) ∘ ( 𝑆𝑓 ) ) ) = ( 𝑓𝑇 ↦ ( ( 𝑅𝑓 ) ∘ ( 𝑆𝑓 ) ) )
15 fvex ( 𝑅𝐺 ) ∈ V
16 fvex ( 𝑆𝐺 ) ∈ V
17 15 16 coex ( ( 𝑅𝐺 ) ∘ ( 𝑆𝐺 ) ) ∈ V
18 13 14 17 fvmpt ( 𝐺𝑇 → ( ( 𝑓𝑇 ↦ ( ( 𝑅𝑓 ) ∘ ( 𝑆𝑓 ) ) ) ‘ 𝐺 ) = ( ( 𝑅𝐺 ) ∘ ( 𝑆𝐺 ) ) )
19 10 18 syl ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑅𝐸𝑆𝐸𝐺𝑇 ) ) → ( ( 𝑓𝑇 ↦ ( ( 𝑅𝑓 ) ∘ ( 𝑆𝑓 ) ) ) ‘ 𝐺 ) = ( ( 𝑅𝐺 ) ∘ ( 𝑆𝐺 ) ) )
20 9 19 eqtrd ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑅𝐸𝑆𝐸𝐺𝑇 ) ) → ( ( 𝑅 + 𝑆 ) ‘ 𝐺 ) = ( ( 𝑅𝐺 ) ∘ ( 𝑆𝐺 ) ) )