Step |
Hyp |
Ref |
Expression |
1 |
|
dvafplus.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dvafplus.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dvafplus.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dvafplus.u |
⊢ 𝑈 = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dvafplus.f |
⊢ 𝐹 = ( Scalar ‘ 𝑈 ) |
6 |
|
dvafplus.p |
⊢ + = ( +g ‘ 𝐹 ) |
7 |
1 2 3 4 5 6
|
dvaplusg |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ) ) → ( 𝑅 + 𝑆 ) = ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑅 ‘ 𝑓 ) ∘ ( 𝑆 ‘ 𝑓 ) ) ) ) |
8 |
7
|
fveq1d |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ) ) → ( ( 𝑅 + 𝑆 ) ‘ 𝐺 ) = ( ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑅 ‘ 𝑓 ) ∘ ( 𝑆 ‘ 𝑓 ) ) ) ‘ 𝐺 ) ) |
9 |
8
|
3adantr3 |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇 ) ) → ( ( 𝑅 + 𝑆 ) ‘ 𝐺 ) = ( ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑅 ‘ 𝑓 ) ∘ ( 𝑆 ‘ 𝑓 ) ) ) ‘ 𝐺 ) ) |
10 |
|
simpr3 |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇 ) ) → 𝐺 ∈ 𝑇 ) |
11 |
|
fveq2 |
⊢ ( 𝑓 = 𝐺 → ( 𝑅 ‘ 𝑓 ) = ( 𝑅 ‘ 𝐺 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑓 = 𝐺 → ( 𝑆 ‘ 𝑓 ) = ( 𝑆 ‘ 𝐺 ) ) |
13 |
11 12
|
coeq12d |
⊢ ( 𝑓 = 𝐺 → ( ( 𝑅 ‘ 𝑓 ) ∘ ( 𝑆 ‘ 𝑓 ) ) = ( ( 𝑅 ‘ 𝐺 ) ∘ ( 𝑆 ‘ 𝐺 ) ) ) |
14 |
|
eqid |
⊢ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑅 ‘ 𝑓 ) ∘ ( 𝑆 ‘ 𝑓 ) ) ) = ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑅 ‘ 𝑓 ) ∘ ( 𝑆 ‘ 𝑓 ) ) ) |
15 |
|
fvex |
⊢ ( 𝑅 ‘ 𝐺 ) ∈ V |
16 |
|
fvex |
⊢ ( 𝑆 ‘ 𝐺 ) ∈ V |
17 |
15 16
|
coex |
⊢ ( ( 𝑅 ‘ 𝐺 ) ∘ ( 𝑆 ‘ 𝐺 ) ) ∈ V |
18 |
13 14 17
|
fvmpt |
⊢ ( 𝐺 ∈ 𝑇 → ( ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑅 ‘ 𝑓 ) ∘ ( 𝑆 ‘ 𝑓 ) ) ) ‘ 𝐺 ) = ( ( 𝑅 ‘ 𝐺 ) ∘ ( 𝑆 ‘ 𝐺 ) ) ) |
19 |
10 18
|
syl |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇 ) ) → ( ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑅 ‘ 𝑓 ) ∘ ( 𝑆 ‘ 𝑓 ) ) ) ‘ 𝐺 ) = ( ( 𝑅 ‘ 𝐺 ) ∘ ( 𝑆 ‘ 𝐺 ) ) ) |
20 |
9 19
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇 ) ) → ( ( 𝑅 + 𝑆 ) ‘ 𝐺 ) = ( ( 𝑅 ‘ 𝐺 ) ∘ ( 𝑆 ‘ 𝐺 ) ) ) |