Step |
Hyp |
Ref |
Expression |
1 |
|
tendoplcbv.p |
⊢ 𝑃 = ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) |
2 |
|
tendopl2.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
fveq1 |
⊢ ( 𝑢 = 𝑈 → ( 𝑢 ‘ 𝑔 ) = ( 𝑈 ‘ 𝑔 ) ) |
4 |
3
|
coeq1d |
⊢ ( 𝑢 = 𝑈 → ( ( 𝑢 ‘ 𝑔 ) ∘ ( 𝑣 ‘ 𝑔 ) ) = ( ( 𝑈 ‘ 𝑔 ) ∘ ( 𝑣 ‘ 𝑔 ) ) ) |
5 |
4
|
mpteq2dv |
⊢ ( 𝑢 = 𝑈 → ( 𝑔 ∈ 𝑇 ↦ ( ( 𝑢 ‘ 𝑔 ) ∘ ( 𝑣 ‘ 𝑔 ) ) ) = ( 𝑔 ∈ 𝑇 ↦ ( ( 𝑈 ‘ 𝑔 ) ∘ ( 𝑣 ‘ 𝑔 ) ) ) ) |
6 |
|
fveq1 |
⊢ ( 𝑣 = 𝑉 → ( 𝑣 ‘ 𝑔 ) = ( 𝑉 ‘ 𝑔 ) ) |
7 |
6
|
coeq2d |
⊢ ( 𝑣 = 𝑉 → ( ( 𝑈 ‘ 𝑔 ) ∘ ( 𝑣 ‘ 𝑔 ) ) = ( ( 𝑈 ‘ 𝑔 ) ∘ ( 𝑉 ‘ 𝑔 ) ) ) |
8 |
7
|
mpteq2dv |
⊢ ( 𝑣 = 𝑉 → ( 𝑔 ∈ 𝑇 ↦ ( ( 𝑈 ‘ 𝑔 ) ∘ ( 𝑣 ‘ 𝑔 ) ) ) = ( 𝑔 ∈ 𝑇 ↦ ( ( 𝑈 ‘ 𝑔 ) ∘ ( 𝑉 ‘ 𝑔 ) ) ) ) |
9 |
1
|
tendoplcbv |
⊢ 𝑃 = ( 𝑢 ∈ 𝐸 , 𝑣 ∈ 𝐸 ↦ ( 𝑔 ∈ 𝑇 ↦ ( ( 𝑢 ‘ 𝑔 ) ∘ ( 𝑣 ‘ 𝑔 ) ) ) ) |
10 |
2
|
fvexi |
⊢ 𝑇 ∈ V |
11 |
10
|
mptex |
⊢ ( 𝑔 ∈ 𝑇 ↦ ( ( 𝑈 ‘ 𝑔 ) ∘ ( 𝑉 ‘ 𝑔 ) ) ) ∈ V |
12 |
5 8 9 11
|
ovmpo |
⊢ ( ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) → ( 𝑈 𝑃 𝑉 ) = ( 𝑔 ∈ 𝑇 ↦ ( ( 𝑈 ‘ 𝑔 ) ∘ ( 𝑉 ‘ 𝑔 ) ) ) ) |