Metamath Proof Explorer


Theorem tendopl

Description: Value of endomorphism sum operation. (Contributed by NM, 10-Jun-2013)

Ref Expression
Hypotheses tendoplcbv.p 𝑃 = ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑓𝑇 ↦ ( ( 𝑠𝑓 ) ∘ ( 𝑡𝑓 ) ) ) )
tendopl2.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion tendopl ( ( 𝑈𝐸𝑉𝐸 ) → ( 𝑈 𝑃 𝑉 ) = ( 𝑔𝑇 ↦ ( ( 𝑈𝑔 ) ∘ ( 𝑉𝑔 ) ) ) )

Proof

Step Hyp Ref Expression
1 tendoplcbv.p 𝑃 = ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑓𝑇 ↦ ( ( 𝑠𝑓 ) ∘ ( 𝑡𝑓 ) ) ) )
2 tendopl2.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 fveq1 ( 𝑢 = 𝑈 → ( 𝑢𝑔 ) = ( 𝑈𝑔 ) )
4 3 coeq1d ( 𝑢 = 𝑈 → ( ( 𝑢𝑔 ) ∘ ( 𝑣𝑔 ) ) = ( ( 𝑈𝑔 ) ∘ ( 𝑣𝑔 ) ) )
5 4 mpteq2dv ( 𝑢 = 𝑈 → ( 𝑔𝑇 ↦ ( ( 𝑢𝑔 ) ∘ ( 𝑣𝑔 ) ) ) = ( 𝑔𝑇 ↦ ( ( 𝑈𝑔 ) ∘ ( 𝑣𝑔 ) ) ) )
6 fveq1 ( 𝑣 = 𝑉 → ( 𝑣𝑔 ) = ( 𝑉𝑔 ) )
7 6 coeq2d ( 𝑣 = 𝑉 → ( ( 𝑈𝑔 ) ∘ ( 𝑣𝑔 ) ) = ( ( 𝑈𝑔 ) ∘ ( 𝑉𝑔 ) ) )
8 7 mpteq2dv ( 𝑣 = 𝑉 → ( 𝑔𝑇 ↦ ( ( 𝑈𝑔 ) ∘ ( 𝑣𝑔 ) ) ) = ( 𝑔𝑇 ↦ ( ( 𝑈𝑔 ) ∘ ( 𝑉𝑔 ) ) ) )
9 1 tendoplcbv 𝑃 = ( 𝑢𝐸 , 𝑣𝐸 ↦ ( 𝑔𝑇 ↦ ( ( 𝑢𝑔 ) ∘ ( 𝑣𝑔 ) ) ) )
10 2 fvexi 𝑇 ∈ V
11 10 mptex ( 𝑔𝑇 ↦ ( ( 𝑈𝑔 ) ∘ ( 𝑉𝑔 ) ) ) ∈ V
12 5 8 9 11 ovmpo ( ( 𝑈𝐸𝑉𝐸 ) → ( 𝑈 𝑃 𝑉 ) = ( 𝑔𝑇 ↦ ( ( 𝑈𝑔 ) ∘ ( 𝑉𝑔 ) ) ) )