Step |
Hyp |
Ref |
Expression |
1 |
|
tendoplcbv.p |
⊢ 𝑃 = ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) |
2 |
|
tendopl2.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
1 2
|
tendopl |
⊢ ( ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) → ( 𝑈 𝑃 𝑉 ) = ( 𝑔 ∈ 𝑇 ↦ ( ( 𝑈 ‘ 𝑔 ) ∘ ( 𝑉 ‘ 𝑔 ) ) ) ) |
4 |
3
|
3adant3 |
⊢ ( ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( 𝑈 𝑃 𝑉 ) = ( 𝑔 ∈ 𝑇 ↦ ( ( 𝑈 ‘ 𝑔 ) ∘ ( 𝑉 ‘ 𝑔 ) ) ) ) |
5 |
|
fveq2 |
⊢ ( 𝑔 = 𝐹 → ( 𝑈 ‘ 𝑔 ) = ( 𝑈 ‘ 𝐹 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑔 = 𝐹 → ( 𝑉 ‘ 𝑔 ) = ( 𝑉 ‘ 𝐹 ) ) |
7 |
5 6
|
coeq12d |
⊢ ( 𝑔 = 𝐹 → ( ( 𝑈 ‘ 𝑔 ) ∘ ( 𝑉 ‘ 𝑔 ) ) = ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐹 ) ) ) |
8 |
7
|
adantl |
⊢ ( ( ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑔 = 𝐹 ) → ( ( 𝑈 ‘ 𝑔 ) ∘ ( 𝑉 ‘ 𝑔 ) ) = ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐹 ) ) ) |
9 |
|
simp3 |
⊢ ( ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → 𝐹 ∈ 𝑇 ) |
10 |
|
fvex |
⊢ ( 𝑈 ‘ 𝐹 ) ∈ V |
11 |
|
fvex |
⊢ ( 𝑉 ‘ 𝐹 ) ∈ V |
12 |
10 11
|
coex |
⊢ ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐹 ) ) ∈ V |
13 |
12
|
a1i |
⊢ ( ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐹 ) ) ∈ V ) |
14 |
4 8 9 13
|
fvmptd |
⊢ ( ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( ( 𝑈 𝑃 𝑉 ) ‘ 𝐹 ) = ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐹 ) ) ) |