Metamath Proof Explorer


Theorem tendopl2

Description: Value of result of endomorphism sum operation. (Contributed by NM, 10-Jun-2013)

Ref Expression
Hypotheses tendoplcbv.p 𝑃 = ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑓𝑇 ↦ ( ( 𝑠𝑓 ) ∘ ( 𝑡𝑓 ) ) ) )
tendopl2.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion tendopl2 ( ( 𝑈𝐸𝑉𝐸𝐹𝑇 ) → ( ( 𝑈 𝑃 𝑉 ) ‘ 𝐹 ) = ( ( 𝑈𝐹 ) ∘ ( 𝑉𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 tendoplcbv.p 𝑃 = ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑓𝑇 ↦ ( ( 𝑠𝑓 ) ∘ ( 𝑡𝑓 ) ) ) )
2 tendopl2.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 1 2 tendopl ( ( 𝑈𝐸𝑉𝐸 ) → ( 𝑈 𝑃 𝑉 ) = ( 𝑔𝑇 ↦ ( ( 𝑈𝑔 ) ∘ ( 𝑉𝑔 ) ) ) )
4 3 3adant3 ( ( 𝑈𝐸𝑉𝐸𝐹𝑇 ) → ( 𝑈 𝑃 𝑉 ) = ( 𝑔𝑇 ↦ ( ( 𝑈𝑔 ) ∘ ( 𝑉𝑔 ) ) ) )
5 fveq2 ( 𝑔 = 𝐹 → ( 𝑈𝑔 ) = ( 𝑈𝐹 ) )
6 fveq2 ( 𝑔 = 𝐹 → ( 𝑉𝑔 ) = ( 𝑉𝐹 ) )
7 5 6 coeq12d ( 𝑔 = 𝐹 → ( ( 𝑈𝑔 ) ∘ ( 𝑉𝑔 ) ) = ( ( 𝑈𝐹 ) ∘ ( 𝑉𝐹 ) ) )
8 7 adantl ( ( ( 𝑈𝐸𝑉𝐸𝐹𝑇 ) ∧ 𝑔 = 𝐹 ) → ( ( 𝑈𝑔 ) ∘ ( 𝑉𝑔 ) ) = ( ( 𝑈𝐹 ) ∘ ( 𝑉𝐹 ) ) )
9 simp3 ( ( 𝑈𝐸𝑉𝐸𝐹𝑇 ) → 𝐹𝑇 )
10 fvex ( 𝑈𝐹 ) ∈ V
11 fvex ( 𝑉𝐹 ) ∈ V
12 10 11 coex ( ( 𝑈𝐹 ) ∘ ( 𝑉𝐹 ) ) ∈ V
13 12 a1i ( ( 𝑈𝐸𝑉𝐸𝐹𝑇 ) → ( ( 𝑈𝐹 ) ∘ ( 𝑉𝐹 ) ) ∈ V )
14 4 8 9 13 fvmptd ( ( 𝑈𝐸𝑉𝐸𝐹𝑇 ) → ( ( 𝑈 𝑃 𝑉 ) ‘ 𝐹 ) = ( ( 𝑈𝐹 ) ∘ ( 𝑉𝐹 ) ) )