Metamath Proof Explorer


Theorem tendopl2

Description: Value of result of endomorphism sum operation. (Contributed by NM, 10-Jun-2013)

Ref Expression
Hypotheses tendoplcbv.p P=sE,tEfTsftf
tendopl2.t T=LTrnKW
Assertion tendopl2 UEVEFTUPVF=UFVF

Proof

Step Hyp Ref Expression
1 tendoplcbv.p P=sE,tEfTsftf
2 tendopl2.t T=LTrnKW
3 1 2 tendopl UEVEUPV=gTUgVg
4 3 3adant3 UEVEFTUPV=gTUgVg
5 fveq2 g=FUg=UF
6 fveq2 g=FVg=VF
7 5 6 coeq12d g=FUgVg=UFVF
8 7 adantl UEVEFTg=FUgVg=UFVF
9 simp3 UEVEFTFT
10 fvex UFV
11 fvex VFV
12 10 11 coex UFVFV
13 12 a1i UEVEFTUFVFV
14 4 8 9 13 fvmptd UEVEFTUPVF=UFVF