Metamath Proof Explorer


Theorem tendopl2

Description: Value of result of endomorphism sum operation. (Contributed by NM, 10-Jun-2013)

Ref Expression
Hypotheses tendoplcbv.p P = s E , t E f T s f t f
tendopl2.t T = LTrn K W
Assertion tendopl2 U E V E F T U P V F = U F V F

Proof

Step Hyp Ref Expression
1 tendoplcbv.p P = s E , t E f T s f t f
2 tendopl2.t T = LTrn K W
3 1 2 tendopl U E V E U P V = g T U g V g
4 3 3adant3 U E V E F T U P V = g T U g V g
5 fveq2 g = F U g = U F
6 fveq2 g = F V g = V F
7 5 6 coeq12d g = F U g V g = U F V F
8 7 adantl U E V E F T g = F U g V g = U F V F
9 simp3 U E V E F T F T
10 fvex U F V
11 fvex V F V
12 10 11 coex U F V F V
13 12 a1i U E V E F T U F V F V
14 4 8 9 13 fvmptd U E V E F T U P V F = U F V F