Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
tendoplcl2
Next ⟩
tendoplco2
Metamath Proof Explorer
Ascii
Unicode
Theorem
tendoplcl2
Description:
Value of result of endomorphism sum operation.
(Contributed by
NM
, 10-Jun-2013)
Ref
Expression
Hypotheses
tendopl.h
⊢
H
=
LHyp
⁡
K
tendopl.t
⊢
T
=
LTrn
⁡
K
⁡
W
tendopl.e
⊢
E
=
TEndo
⁡
K
⁡
W
tendopl.p
⊢
P
=
s
∈
E
,
t
∈
E
⟼
f
∈
T
⟼
s
⁡
f
∘
t
⁡
f
Assertion
tendoplcl2
⊢
K
∈
HL
∧
W
∈
H
∧
U
∈
E
∧
V
∈
E
∧
F
∈
T
→
U
P
V
⁡
F
∈
T
Proof
Step
Hyp
Ref
Expression
1
tendopl.h
⊢
H
=
LHyp
⁡
K
2
tendopl.t
⊢
T
=
LTrn
⁡
K
⁡
W
3
tendopl.e
⊢
E
=
TEndo
⁡
K
⁡
W
4
tendopl.p
⊢
P
=
s
∈
E
,
t
∈
E
⟼
f
∈
T
⟼
s
⁡
f
∘
t
⁡
f
5
4
2
tendopl2
⊢
U
∈
E
∧
V
∈
E
∧
F
∈
T
→
U
P
V
⁡
F
=
U
⁡
F
∘
V
⁡
F
6
5
3expa
⊢
U
∈
E
∧
V
∈
E
∧
F
∈
T
→
U
P
V
⁡
F
=
U
⁡
F
∘
V
⁡
F
7
6
3adant1
⊢
K
∈
HL
∧
W
∈
H
∧
U
∈
E
∧
V
∈
E
∧
F
∈
T
→
U
P
V
⁡
F
=
U
⁡
F
∘
V
⁡
F
8
simp1
⊢
K
∈
HL
∧
W
∈
H
∧
U
∈
E
∧
V
∈
E
∧
F
∈
T
→
K
∈
HL
∧
W
∈
H
9
1
2
3
tendocl
⊢
K
∈
HL
∧
W
∈
H
∧
U
∈
E
∧
F
∈
T
→
U
⁡
F
∈
T
10
9
3adant2r
⊢
K
∈
HL
∧
W
∈
H
∧
U
∈
E
∧
V
∈
E
∧
F
∈
T
→
U
⁡
F
∈
T
11
1
2
3
tendocl
⊢
K
∈
HL
∧
W
∈
H
∧
V
∈
E
∧
F
∈
T
→
V
⁡
F
∈
T
12
11
3adant2l
⊢
K
∈
HL
∧
W
∈
H
∧
U
∈
E
∧
V
∈
E
∧
F
∈
T
→
V
⁡
F
∈
T
13
1
2
ltrnco
⊢
K
∈
HL
∧
W
∈
H
∧
U
⁡
F
∈
T
∧
V
⁡
F
∈
T
→
U
⁡
F
∘
V
⁡
F
∈
T
14
8
10
12
13
syl3anc
⊢
K
∈
HL
∧
W
∈
H
∧
U
∈
E
∧
V
∈
E
∧
F
∈
T
→
U
⁡
F
∘
V
⁡
F
∈
T
15
7
14
eqeltrd
⊢
K
∈
HL
∧
W
∈
H
∧
U
∈
E
∧
V
∈
E
∧
F
∈
T
→
U
P
V
⁡
F
∈
T