Metamath Proof Explorer


Theorem tendoplcl2

Description: Value of result of endomorphism sum operation. (Contributed by NM, 10-Jun-2013)

Ref Expression
Hypotheses tendopl.h H = LHyp K
tendopl.t T = LTrn K W
tendopl.e E = TEndo K W
tendopl.p P = s E , t E f T s f t f
Assertion tendoplcl2 K HL W H U E V E F T U P V F T

Proof

Step Hyp Ref Expression
1 tendopl.h H = LHyp K
2 tendopl.t T = LTrn K W
3 tendopl.e E = TEndo K W
4 tendopl.p P = s E , t E f T s f t f
5 4 2 tendopl2 U E V E F T U P V F = U F V F
6 5 3expa U E V E F T U P V F = U F V F
7 6 3adant1 K HL W H U E V E F T U P V F = U F V F
8 simp1 K HL W H U E V E F T K HL W H
9 1 2 3 tendocl K HL W H U E F T U F T
10 9 3adant2r K HL W H U E V E F T U F T
11 1 2 3 tendocl K HL W H V E F T V F T
12 11 3adant2l K HL W H U E V E F T V F T
13 1 2 ltrnco K HL W H U F T V F T U F V F T
14 8 10 12 13 syl3anc K HL W H U E V E F T U F V F T
15 7 14 eqeltrd K HL W H U E V E F T U P V F T