Metamath Proof Explorer


Theorem tendoplcl2

Description: Value of result of endomorphism sum operation. (Contributed by NM, 10-Jun-2013)

Ref Expression
Hypotheses tendopl.h 𝐻 = ( LHyp ‘ 𝐾 )
tendopl.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
tendopl.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
tendopl.p 𝑃 = ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑓𝑇 ↦ ( ( 𝑠𝑓 ) ∘ ( 𝑡𝑓 ) ) ) )
Assertion tendoplcl2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ∧ 𝐹𝑇 ) → ( ( 𝑈 𝑃 𝑉 ) ‘ 𝐹 ) ∈ 𝑇 )

Proof

Step Hyp Ref Expression
1 tendopl.h 𝐻 = ( LHyp ‘ 𝐾 )
2 tendopl.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 tendopl.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
4 tendopl.p 𝑃 = ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑓𝑇 ↦ ( ( 𝑠𝑓 ) ∘ ( 𝑡𝑓 ) ) ) )
5 4 2 tendopl2 ( ( 𝑈𝐸𝑉𝐸𝐹𝑇 ) → ( ( 𝑈 𝑃 𝑉 ) ‘ 𝐹 ) = ( ( 𝑈𝐹 ) ∘ ( 𝑉𝐹 ) ) )
6 5 3expa ( ( ( 𝑈𝐸𝑉𝐸 ) ∧ 𝐹𝑇 ) → ( ( 𝑈 𝑃 𝑉 ) ‘ 𝐹 ) = ( ( 𝑈𝐹 ) ∘ ( 𝑉𝐹 ) ) )
7 6 3adant1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ∧ 𝐹𝑇 ) → ( ( 𝑈 𝑃 𝑉 ) ‘ 𝐹 ) = ( ( 𝑈𝐹 ) ∘ ( 𝑉𝐹 ) ) )
8 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ∧ 𝐹𝑇 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 1 2 3 tendocl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸𝐹𝑇 ) → ( 𝑈𝐹 ) ∈ 𝑇 )
10 9 3adant2r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ∧ 𝐹𝑇 ) → ( 𝑈𝐹 ) ∈ 𝑇 )
11 1 2 3 tendocl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑉𝐸𝐹𝑇 ) → ( 𝑉𝐹 ) ∈ 𝑇 )
12 11 3adant2l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ∧ 𝐹𝑇 ) → ( 𝑉𝐹 ) ∈ 𝑇 )
13 1 2 ltrnco ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐹 ) ∈ 𝑇 ∧ ( 𝑉𝐹 ) ∈ 𝑇 ) → ( ( 𝑈𝐹 ) ∘ ( 𝑉𝐹 ) ) ∈ 𝑇 )
14 8 10 12 13 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ∧ 𝐹𝑇 ) → ( ( 𝑈𝐹 ) ∘ ( 𝑉𝐹 ) ) ∈ 𝑇 )
15 7 14 eqeltrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ∧ 𝐹𝑇 ) → ( ( 𝑈 𝑃 𝑉 ) ‘ 𝐹 ) ∈ 𝑇 )