Step |
Hyp |
Ref |
Expression |
1 |
|
tendopl.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
tendopl.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
tendopl.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
tendopl.p |
⊢ 𝑃 = ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) |
5 |
1 2 3
|
tendoco2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( ( 𝑈 ‘ ( 𝐹 ∘ 𝐺 ) ) ∘ ( 𝑉 ‘ ( 𝐹 ∘ 𝐺 ) ) ) = ( ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐹 ) ) ∘ ( ( 𝑈 ‘ 𝐺 ) ∘ ( 𝑉 ‘ 𝐺 ) ) ) ) |
6 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → 𝐹 ∈ 𝑇 ) |
8 |
|
simp3r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → 𝐺 ∈ 𝑇 ) |
9 |
1 2
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) |
10 |
6 7 8 9
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) |
11 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) → 𝑈 ∈ 𝐸 ) |
12 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) → 𝑉 ∈ 𝐸 ) |
13 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) → ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) |
14 |
4 2
|
tendopl2 |
⊢ ( ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) → ( ( 𝑈 𝑃 𝑉 ) ‘ ( 𝐹 ∘ 𝐺 ) ) = ( ( 𝑈 ‘ ( 𝐹 ∘ 𝐺 ) ) ∘ ( 𝑉 ‘ ( 𝐹 ∘ 𝐺 ) ) ) ) |
15 |
11 12 13 14
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) → ( ( 𝑈 𝑃 𝑉 ) ‘ ( 𝐹 ∘ 𝐺 ) ) = ( ( 𝑈 ‘ ( 𝐹 ∘ 𝐺 ) ) ∘ ( 𝑉 ‘ ( 𝐹 ∘ 𝐺 ) ) ) ) |
16 |
10 15
|
syld3an3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( ( 𝑈 𝑃 𝑉 ) ‘ ( 𝐹 ∘ 𝐺 ) ) = ( ( 𝑈 ‘ ( 𝐹 ∘ 𝐺 ) ) ∘ ( 𝑉 ‘ ( 𝐹 ∘ 𝐺 ) ) ) ) |
17 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → 𝑈 ∈ 𝐸 ) |
18 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → 𝑉 ∈ 𝐸 ) |
19 |
4 2
|
tendopl2 |
⊢ ( ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( ( 𝑈 𝑃 𝑉 ) ‘ 𝐹 ) = ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐹 ) ) ) |
20 |
17 18 7 19
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( ( 𝑈 𝑃 𝑉 ) ‘ 𝐹 ) = ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐹 ) ) ) |
21 |
4 2
|
tendopl2 |
⊢ ( ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇 ) → ( ( 𝑈 𝑃 𝑉 ) ‘ 𝐺 ) = ( ( 𝑈 ‘ 𝐺 ) ∘ ( 𝑉 ‘ 𝐺 ) ) ) |
22 |
17 18 8 21
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( ( 𝑈 𝑃 𝑉 ) ‘ 𝐺 ) = ( ( 𝑈 ‘ 𝐺 ) ∘ ( 𝑉 ‘ 𝐺 ) ) ) |
23 |
20 22
|
coeq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( ( ( 𝑈 𝑃 𝑉 ) ‘ 𝐹 ) ∘ ( ( 𝑈 𝑃 𝑉 ) ‘ 𝐺 ) ) = ( ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐹 ) ) ∘ ( ( 𝑈 ‘ 𝐺 ) ∘ ( 𝑉 ‘ 𝐺 ) ) ) ) |
24 |
5 16 23
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( ( 𝑈 𝑃 𝑉 ) ‘ ( 𝐹 ∘ 𝐺 ) ) = ( ( ( 𝑈 𝑃 𝑉 ) ‘ 𝐹 ) ∘ ( ( 𝑈 𝑃 𝑉 ) ‘ 𝐺 ) ) ) |