| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tendopl.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
tendopl.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
tendopl.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
tendopl.p |
⊢ 𝑃 = ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) |
| 5 |
1 2 3
|
tendoco2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( ( 𝑈 ‘ ( 𝐹 ∘ 𝐺 ) ) ∘ ( 𝑉 ‘ ( 𝐹 ∘ 𝐺 ) ) ) = ( ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐹 ) ) ∘ ( ( 𝑈 ‘ 𝐺 ) ∘ ( 𝑉 ‘ 𝐺 ) ) ) ) |
| 6 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 7 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → 𝐹 ∈ 𝑇 ) |
| 8 |
|
simp3r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → 𝐺 ∈ 𝑇 ) |
| 9 |
1 2
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) |
| 10 |
6 7 8 9
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) |
| 11 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) → 𝑈 ∈ 𝐸 ) |
| 12 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) → 𝑉 ∈ 𝐸 ) |
| 13 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) → ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) |
| 14 |
4 2
|
tendopl2 |
⊢ ( ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) → ( ( 𝑈 𝑃 𝑉 ) ‘ ( 𝐹 ∘ 𝐺 ) ) = ( ( 𝑈 ‘ ( 𝐹 ∘ 𝐺 ) ) ∘ ( 𝑉 ‘ ( 𝐹 ∘ 𝐺 ) ) ) ) |
| 15 |
11 12 13 14
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∘ 𝐺 ) ∈ 𝑇 ) → ( ( 𝑈 𝑃 𝑉 ) ‘ ( 𝐹 ∘ 𝐺 ) ) = ( ( 𝑈 ‘ ( 𝐹 ∘ 𝐺 ) ) ∘ ( 𝑉 ‘ ( 𝐹 ∘ 𝐺 ) ) ) ) |
| 16 |
10 15
|
syld3an3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( ( 𝑈 𝑃 𝑉 ) ‘ ( 𝐹 ∘ 𝐺 ) ) = ( ( 𝑈 ‘ ( 𝐹 ∘ 𝐺 ) ) ∘ ( 𝑉 ‘ ( 𝐹 ∘ 𝐺 ) ) ) ) |
| 17 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → 𝑈 ∈ 𝐸 ) |
| 18 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → 𝑉 ∈ 𝐸 ) |
| 19 |
4 2
|
tendopl2 |
⊢ ( ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( ( 𝑈 𝑃 𝑉 ) ‘ 𝐹 ) = ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐹 ) ) ) |
| 20 |
17 18 7 19
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( ( 𝑈 𝑃 𝑉 ) ‘ 𝐹 ) = ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐹 ) ) ) |
| 21 |
4 2
|
tendopl2 |
⊢ ( ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇 ) → ( ( 𝑈 𝑃 𝑉 ) ‘ 𝐺 ) = ( ( 𝑈 ‘ 𝐺 ) ∘ ( 𝑉 ‘ 𝐺 ) ) ) |
| 22 |
17 18 8 21
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( ( 𝑈 𝑃 𝑉 ) ‘ 𝐺 ) = ( ( 𝑈 ‘ 𝐺 ) ∘ ( 𝑉 ‘ 𝐺 ) ) ) |
| 23 |
20 22
|
coeq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( ( ( 𝑈 𝑃 𝑉 ) ‘ 𝐹 ) ∘ ( ( 𝑈 𝑃 𝑉 ) ‘ 𝐺 ) ) = ( ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐹 ) ) ∘ ( ( 𝑈 ‘ 𝐺 ) ∘ ( 𝑉 ‘ 𝐺 ) ) ) ) |
| 24 |
5 16 23
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( ( 𝑈 𝑃 𝑉 ) ‘ ( 𝐹 ∘ 𝐺 ) ) = ( ( ( 𝑈 𝑃 𝑉 ) ‘ 𝐹 ) ∘ ( ( 𝑈 𝑃 𝑉 ) ‘ 𝐺 ) ) ) |