Step |
Hyp |
Ref |
Expression |
1 |
|
tendof.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
tendof.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
tendof.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → 𝐾 ∈ HL ) |
5 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → 𝑊 ∈ 𝐻 ) |
6 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → 𝑈 ∈ 𝐸 ) |
7 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → 𝐹 ∈ 𝑇 ) |
8 |
|
simp3r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → 𝐺 ∈ 𝑇 ) |
9 |
1 2 3
|
tendovalco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑈 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( 𝑈 ‘ ( 𝐹 ∘ 𝐺 ) ) = ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑈 ‘ 𝐺 ) ) ) |
10 |
4 5 6 7 8 9
|
syl32anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( 𝑈 ‘ ( 𝐹 ∘ 𝐺 ) ) = ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑈 ‘ 𝐺 ) ) ) |
11 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → 𝑉 ∈ 𝐸 ) |
12 |
1 2 3
|
tendovalco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( 𝑉 ‘ ( 𝐹 ∘ 𝐺 ) ) = ( ( 𝑉 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐺 ) ) ) |
13 |
4 5 11 7 8 12
|
syl32anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( 𝑉 ‘ ( 𝐹 ∘ 𝐺 ) ) = ( ( 𝑉 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐺 ) ) ) |
14 |
10 13
|
coeq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( ( 𝑈 ‘ ( 𝐹 ∘ 𝐺 ) ) ∘ ( 𝑉 ‘ ( 𝐹 ∘ 𝐺 ) ) ) = ( ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑈 ‘ 𝐺 ) ) ∘ ( ( 𝑉 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐺 ) ) ) ) |
15 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
16 |
1 2 3
|
tendocl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇 ) → ( 𝑈 ‘ 𝐺 ) ∈ 𝑇 ) |
17 |
15 6 8 16
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( 𝑈 ‘ 𝐺 ) ∈ 𝑇 ) |
18 |
1 2 3
|
tendocl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( 𝑉 ‘ 𝐹 ) ∈ 𝑇 ) |
19 |
15 11 7 18
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( 𝑉 ‘ 𝐹 ) ∈ 𝑇 ) |
20 |
1 2
|
ltrnco4 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ‘ 𝐺 ) ∈ 𝑇 ∧ ( 𝑉 ‘ 𝐹 ) ∈ 𝑇 ) → ( ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑈 ‘ 𝐺 ) ) ∘ ( ( 𝑉 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐺 ) ) ) = ( ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐹 ) ) ∘ ( ( 𝑈 ‘ 𝐺 ) ∘ ( 𝑉 ‘ 𝐺 ) ) ) ) |
21 |
15 17 19 20
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑈 ‘ 𝐺 ) ) ∘ ( ( 𝑉 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐺 ) ) ) = ( ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐹 ) ) ∘ ( ( 𝑈 ‘ 𝐺 ) ∘ ( 𝑉 ‘ 𝐺 ) ) ) ) |
22 |
14 21
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) → ( ( 𝑈 ‘ ( 𝐹 ∘ 𝐺 ) ) ∘ ( 𝑉 ‘ ( 𝐹 ∘ 𝐺 ) ) ) = ( ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐹 ) ) ∘ ( ( 𝑈 ‘ 𝐺 ) ∘ ( 𝑉 ‘ 𝐺 ) ) ) ) |