Metamath Proof Explorer


Theorem tendoco2

Description: Distribution of compositions in preparation for endomorphism sum definition. (Contributed by NM, 10-Jun-2013)

Ref Expression
Hypotheses tendof.h H = LHyp K
tendof.t T = LTrn K W
tendof.e E = TEndo K W
Assertion tendoco2 K HL W H U E V E F T G T U F G V F G = U F V F U G V G

Proof

Step Hyp Ref Expression
1 tendof.h H = LHyp K
2 tendof.t T = LTrn K W
3 tendof.e E = TEndo K W
4 simp1l K HL W H U E V E F T G T K HL
5 simp1r K HL W H U E V E F T G T W H
6 simp2l K HL W H U E V E F T G T U E
7 simp3l K HL W H U E V E F T G T F T
8 simp3r K HL W H U E V E F T G T G T
9 1 2 3 tendovalco K HL W H U E F T G T U F G = U F U G
10 4 5 6 7 8 9 syl32anc K HL W H U E V E F T G T U F G = U F U G
11 simp2r K HL W H U E V E F T G T V E
12 1 2 3 tendovalco K HL W H V E F T G T V F G = V F V G
13 4 5 11 7 8 12 syl32anc K HL W H U E V E F T G T V F G = V F V G
14 10 13 coeq12d K HL W H U E V E F T G T U F G V F G = U F U G V F V G
15 simp1 K HL W H U E V E F T G T K HL W H
16 1 2 3 tendocl K HL W H U E G T U G T
17 15 6 8 16 syl3anc K HL W H U E V E F T G T U G T
18 1 2 3 tendocl K HL W H V E F T V F T
19 15 11 7 18 syl3anc K HL W H U E V E F T G T V F T
20 1 2 ltrnco4 K HL W H U G T V F T U F U G V F V G = U F V F U G V G
21 15 17 19 20 syl3anc K HL W H U E V E F T G T U F U G V F V G = U F V F U G V G
22 14 21 eqtrd K HL W H U E V E F T G T U F G V F G = U F V F U G V G