Metamath Proof Explorer


Theorem tendoidcl

Description: The identity is a trace-preserving endomorphism. (Contributed by NM, 30-Jul-2013)

Ref Expression
Hypotheses tendof.h H = LHyp K
tendof.t T = LTrn K W
tendof.e E = TEndo K W
Assertion tendoidcl K HL W H I T E

Proof

Step Hyp Ref Expression
1 tendof.h H = LHyp K
2 tendof.t T = LTrn K W
3 tendof.e E = TEndo K W
4 eqid K = K
5 eqid trL K W = trL K W
6 id K HL W H K HL W H
7 f1oi I T : T 1-1 onto T
8 f1of I T : T 1-1 onto T I T : T T
9 7 8 mp1i K HL W H I T : T T
10 1 2 ltrnco K HL W H f T g T f g T
11 fvresi f g T I T f g = f g
12 10 11 syl K HL W H f T g T I T f g = f g
13 fvresi f T I T f = f
14 13 3ad2ant2 K HL W H f T g T I T f = f
15 fvresi g T I T g = g
16 15 3ad2ant3 K HL W H f T g T I T g = g
17 14 16 coeq12d K HL W H f T g T I T f I T g = f g
18 12 17 eqtr4d K HL W H f T g T I T f g = I T f I T g
19 13 adantl K HL W H f T I T f = f
20 19 fveq2d K HL W H f T trL K W I T f = trL K W f
21 hllat K HL K Lat
22 21 ad2antrr K HL W H f T K Lat
23 eqid Base K = Base K
24 23 1 2 5 trlcl K HL W H f T trL K W f Base K
25 23 4 latref K Lat trL K W f Base K trL K W f K trL K W f
26 22 24 25 syl2anc K HL W H f T trL K W f K trL K W f
27 20 26 eqbrtrd K HL W H f T trL K W I T f K trL K W f
28 4 1 2 5 3 6 9 18 27 istendod K HL W H I T E