Step |
Hyp |
Ref |
Expression |
1 |
|
tendof.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
tendof.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
tendof.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
5 |
|
eqid |
⊢ ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
id |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
|
f1oi |
⊢ ( I ↾ 𝑇 ) : 𝑇 –1-1-onto→ 𝑇 |
8 |
|
f1of |
⊢ ( ( I ↾ 𝑇 ) : 𝑇 –1-1-onto→ 𝑇 → ( I ↾ 𝑇 ) : 𝑇 ⟶ 𝑇 ) |
9 |
7 8
|
mp1i |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝑇 ) : 𝑇 ⟶ 𝑇 ) |
10 |
1 2
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇 ) → ( 𝑓 ∘ 𝑔 ) ∈ 𝑇 ) |
11 |
|
fvresi |
⊢ ( ( 𝑓 ∘ 𝑔 ) ∈ 𝑇 → ( ( I ↾ 𝑇 ) ‘ ( 𝑓 ∘ 𝑔 ) ) = ( 𝑓 ∘ 𝑔 ) ) |
12 |
10 11
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇 ) → ( ( I ↾ 𝑇 ) ‘ ( 𝑓 ∘ 𝑔 ) ) = ( 𝑓 ∘ 𝑔 ) ) |
13 |
|
fvresi |
⊢ ( 𝑓 ∈ 𝑇 → ( ( I ↾ 𝑇 ) ‘ 𝑓 ) = 𝑓 ) |
14 |
13
|
3ad2ant2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇 ) → ( ( I ↾ 𝑇 ) ‘ 𝑓 ) = 𝑓 ) |
15 |
|
fvresi |
⊢ ( 𝑔 ∈ 𝑇 → ( ( I ↾ 𝑇 ) ‘ 𝑔 ) = 𝑔 ) |
16 |
15
|
3ad2ant3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇 ) → ( ( I ↾ 𝑇 ) ‘ 𝑔 ) = 𝑔 ) |
17 |
14 16
|
coeq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇 ) → ( ( ( I ↾ 𝑇 ) ‘ 𝑓 ) ∘ ( ( I ↾ 𝑇 ) ‘ 𝑔 ) ) = ( 𝑓 ∘ 𝑔 ) ) |
18 |
12 17
|
eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇 ) → ( ( I ↾ 𝑇 ) ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( ( I ↾ 𝑇 ) ‘ 𝑓 ) ∘ ( ( I ↾ 𝑇 ) ‘ 𝑔 ) ) ) |
19 |
13
|
adantl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ 𝑇 ) → ( ( I ↾ 𝑇 ) ‘ 𝑓 ) = 𝑓 ) |
20 |
19
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ 𝑇 ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( I ↾ 𝑇 ) ‘ 𝑓 ) ) = ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) ) |
21 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
22 |
21
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ 𝑇 ) → 𝐾 ∈ Lat ) |
23 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
24 |
23 1 2 5
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ 𝑇 ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) ∈ ( Base ‘ 𝐾 ) ) |
25 |
23 4
|
latref |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) ( le ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) ) |
26 |
22 24 25
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ 𝑇 ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) ( le ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) ) |
27 |
20 26
|
eqbrtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ 𝑇 ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( I ↾ 𝑇 ) ‘ 𝑓 ) ) ( le ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) ) |
28 |
4 1 2 5 3 6 9 18 27
|
istendod |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝑇 ) ∈ 𝐸 ) |