Description: Multiplicative identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 20-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tendof.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
| tendof.t | ⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | ||
| tendof.e | ⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) | ||
| Assertion | tendo1mul | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ) → ( ( I ↾ 𝑇 ) ∘ 𝑈 ) = 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tendof.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
| 2 | tendof.t | ⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | |
| 3 | tendof.e | ⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) | |
| 4 | 1 2 3 | tendof | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ) → 𝑈 : 𝑇 ⟶ 𝑇 ) |
| 5 | fcoi2 | ⊢ ( 𝑈 : 𝑇 ⟶ 𝑇 → ( ( I ↾ 𝑇 ) ∘ 𝑈 ) = 𝑈 ) | |
| 6 | 4 5 | syl | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ) → ( ( I ↾ 𝑇 ) ∘ 𝑈 ) = 𝑈 ) |