Metamath Proof Explorer


Theorem ltrnco4

Description: Rearrange a composition of 4 translations, analogous to an4 . (Contributed by NM, 10-Jun-2013)

Ref Expression
Hypotheses ltrncom.h H = LHyp K
ltrncom.t T = LTrn K W
Assertion ltrnco4 K HL W H E T F T D E F G = D F E G

Proof

Step Hyp Ref Expression
1 ltrncom.h H = LHyp K
2 ltrncom.t T = LTrn K W
3 1 2 ltrncom K HL W H E T F T E F = F E
4 3 coeq1d K HL W H E T F T E F G = F E G
5 coass E F G = E F G
6 coass F E G = F E G
7 4 5 6 3eqtr3g K HL W H E T F T E F G = F E G
8 7 coeq2d K HL W H E T F T D E F G = D F E G
9 coass D E F G = D E F G
10 coass D F E G = D F E G
11 8 9 10 3eqtr4g K HL W H E T F T D E F G = D F E G