Metamath Proof Explorer


Theorem ltrncom

Description: Composition is commutative for translations. Part of proof of Lemma G of Crawley p. 116. (Contributed by NM, 5-Jun-2013)

Ref Expression
Hypotheses ltrncom.h H = LHyp K
ltrncom.t T = LTrn K W
Assertion ltrncom K HL W H F T G T F G = G F

Proof

Step Hyp Ref Expression
1 ltrncom.h H = LHyp K
2 ltrncom.t T = LTrn K W
3 simpl1 K HL W H F T G T F = I Base K K HL W H
4 simpl2 K HL W H F T G T F = I Base K F T
5 simpl3 K HL W H F T G T F = I Base K G T
6 simpr K HL W H F T G T F = I Base K F = I Base K
7 eqid Base K = Base K
8 7 1 2 cdlemg47a K HL W H F T G T F = I Base K F G = G F
9 3 4 5 6 8 syl121anc K HL W H F T G T F = I Base K F G = G F
10 simpll1 K HL W H F T G T F I Base K trL K W F = trL K W G K HL W H
11 simpll2 K HL W H F T G T F I Base K trL K W F = trL K W G F T
12 simpll3 K HL W H F T G T F I Base K trL K W F = trL K W G G T
13 simplr K HL W H F T G T F I Base K trL K W F = trL K W G F I Base K
14 simpr K HL W H F T G T F I Base K trL K W F = trL K W G trL K W F = trL K W G
15 eqid trL K W = trL K W
16 7 1 2 15 cdlemg48 K HL W H F T G T F I Base K trL K W F = trL K W G F G = G F
17 10 11 12 13 14 16 syl122anc K HL W H F T G T F I Base K trL K W F = trL K W G F G = G F
18 simpll1 K HL W H F T G T F I Base K trL K W F trL K W G K HL W H
19 simpll2 K HL W H F T G T F I Base K trL K W F trL K W G F T
20 simpll3 K HL W H F T G T F I Base K trL K W F trL K W G G T
21 simpr K HL W H F T G T F I Base K trL K W F trL K W G trL K W F trL K W G
22 1 2 15 cdlemg44 K HL W H F T G T trL K W F trL K W G F G = G F
23 18 19 20 21 22 syl121anc K HL W H F T G T F I Base K trL K W F trL K W G F G = G F
24 17 23 pm2.61dane K HL W H F T G T F I Base K F G = G F
25 9 24 pm2.61dane K HL W H F T G T F G = G F