Metamath Proof Explorer


Theorem cdlemg47a

Description: TODO: fix comment. TODO: Use this above in place of ( FP ) = P antecedents? (Contributed by NM, 5-Jun-2013)

Ref Expression
Hypotheses cdlemg46.b B = Base K
cdlemg46.h H = LHyp K
cdlemg46.t T = LTrn K W
Assertion cdlemg47a K HL W H F T G T F = I B F G = G F

Proof

Step Hyp Ref Expression
1 cdlemg46.b B = Base K
2 cdlemg46.h H = LHyp K
3 cdlemg46.t T = LTrn K W
4 simp1 K HL W H F T G T F = I B K HL W H
5 simp2r K HL W H F T G T F = I B G T
6 1 2 3 ltrn1o K HL W H G T G : B 1-1 onto B
7 4 5 6 syl2anc K HL W H F T G T F = I B G : B 1-1 onto B
8 f1of G : B 1-1 onto B G : B B
9 7 8 syl K HL W H F T G T F = I B G : B B
10 fcoi1 G : B B G I B = G
11 9 10 syl K HL W H F T G T F = I B G I B = G
12 simp3 K HL W H F T G T F = I B F = I B
13 12 coeq2d K HL W H F T G T F = I B G F = G I B
14 12 coeq1d K HL W H F T G T F = I B F G = I B G
15 fcoi2 G : B B I B G = G
16 9 15 syl K HL W H F T G T F = I B I B G = G
17 14 16 eqtrd K HL W H F T G T F = I B F G = G
18 11 13 17 3eqtr4rd K HL W H F T G T F = I B F G = G F