Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg46.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemg46.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
cdlemg46.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 = ( I ↾ 𝐵 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
5 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 = ( I ↾ 𝐵 ) ) → 𝐺 ∈ 𝑇 ) |
6 |
1 2 3
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ) → 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) |
7 |
4 5 6
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 = ( I ↾ 𝐵 ) ) → 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) |
8 |
|
f1of |
⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐵 → 𝐺 : 𝐵 ⟶ 𝐵 ) |
9 |
7 8
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 = ( I ↾ 𝐵 ) ) → 𝐺 : 𝐵 ⟶ 𝐵 ) |
10 |
|
fcoi1 |
⊢ ( 𝐺 : 𝐵 ⟶ 𝐵 → ( 𝐺 ∘ ( I ↾ 𝐵 ) ) = 𝐺 ) |
11 |
9 10
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 = ( I ↾ 𝐵 ) ) → ( 𝐺 ∘ ( I ↾ 𝐵 ) ) = 𝐺 ) |
12 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 = ( I ↾ 𝐵 ) ) → 𝐹 = ( I ↾ 𝐵 ) ) |
13 |
12
|
coeq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 = ( I ↾ 𝐵 ) ) → ( 𝐺 ∘ 𝐹 ) = ( 𝐺 ∘ ( I ↾ 𝐵 ) ) ) |
14 |
12
|
coeq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 = ( I ↾ 𝐵 ) ) → ( 𝐹 ∘ 𝐺 ) = ( ( I ↾ 𝐵 ) ∘ 𝐺 ) ) |
15 |
|
fcoi2 |
⊢ ( 𝐺 : 𝐵 ⟶ 𝐵 → ( ( I ↾ 𝐵 ) ∘ 𝐺 ) = 𝐺 ) |
16 |
9 15
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 = ( I ↾ 𝐵 ) ) → ( ( I ↾ 𝐵 ) ∘ 𝐺 ) = 𝐺 ) |
17 |
14 16
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 = ( I ↾ 𝐵 ) ) → ( 𝐹 ∘ 𝐺 ) = 𝐺 ) |
18 |
11 13 17
|
3eqtr4rd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝐹 = ( I ↾ 𝐵 ) ) → ( 𝐹 ∘ 𝐺 ) = ( 𝐺 ∘ 𝐹 ) ) |