Metamath Proof Explorer


Theorem cdlemg47a

Description: TODO: fix comment. TODO: Use this above in place of ( FP ) = P antecedents? (Contributed by NM, 5-Jun-2013)

Ref Expression
Hypotheses cdlemg46.b 𝐵 = ( Base ‘ 𝐾 )
cdlemg46.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg46.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemg47a ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝐹 = ( I ↾ 𝐵 ) ) → ( 𝐹𝐺 ) = ( 𝐺𝐹 ) )

Proof

Step Hyp Ref Expression
1 cdlemg46.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemg46.h 𝐻 = ( LHyp ‘ 𝐾 )
3 cdlemg46.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
4 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝐹 = ( I ↾ 𝐵 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
5 simp2r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝐹 = ( I ↾ 𝐵 ) ) → 𝐺𝑇 )
6 1 2 3 ltrn1o ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 ) → 𝐺 : 𝐵1-1-onto𝐵 )
7 4 5 6 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝐹 = ( I ↾ 𝐵 ) ) → 𝐺 : 𝐵1-1-onto𝐵 )
8 f1of ( 𝐺 : 𝐵1-1-onto𝐵𝐺 : 𝐵𝐵 )
9 7 8 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝐹 = ( I ↾ 𝐵 ) ) → 𝐺 : 𝐵𝐵 )
10 fcoi1 ( 𝐺 : 𝐵𝐵 → ( 𝐺 ∘ ( I ↾ 𝐵 ) ) = 𝐺 )
11 9 10 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝐹 = ( I ↾ 𝐵 ) ) → ( 𝐺 ∘ ( I ↾ 𝐵 ) ) = 𝐺 )
12 simp3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝐹 = ( I ↾ 𝐵 ) ) → 𝐹 = ( I ↾ 𝐵 ) )
13 12 coeq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝐹 = ( I ↾ 𝐵 ) ) → ( 𝐺𝐹 ) = ( 𝐺 ∘ ( I ↾ 𝐵 ) ) )
14 12 coeq1d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝐹 = ( I ↾ 𝐵 ) ) → ( 𝐹𝐺 ) = ( ( I ↾ 𝐵 ) ∘ 𝐺 ) )
15 fcoi2 ( 𝐺 : 𝐵𝐵 → ( ( I ↾ 𝐵 ) ∘ 𝐺 ) = 𝐺 )
16 9 15 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝐹 = ( I ↾ 𝐵 ) ) → ( ( I ↾ 𝐵 ) ∘ 𝐺 ) = 𝐺 )
17 14 16 eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝐹 = ( I ↾ 𝐵 ) ) → ( 𝐹𝐺 ) = 𝐺 )
18 11 13 17 3eqtr4rd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝐹 = ( I ↾ 𝐵 ) ) → ( 𝐹𝐺 ) = ( 𝐺𝐹 ) )