Metamath Proof Explorer


Theorem cdlemg46

Description: Part of proof of Lemma G of Crawley p. 116, seventh line of third paragraph on p. 117: "hf and f have different traces." (Contributed by NM, 5-Jun-2013)

Ref Expression
Hypotheses cdlemg46.b B=BaseK
cdlemg46.h H=LHypK
cdlemg46.t T=LTrnKW
cdlemg46.r R=trLKW
Assertion cdlemg46 KHLWHFThTFIBhIBRhRFRhFRF

Proof

Step Hyp Ref Expression
1 cdlemg46.b B=BaseK
2 cdlemg46.h H=LHypK
3 cdlemg46.t T=LTrnKW
4 cdlemg46.r R=trLKW
5 simpl1l KHLWHFThTFIBhIBRhRFRhFAtomsKKHL
6 simp1 KHLWHFThTFIBhIBRhRFKHLWH
7 simp2r KHLWHFThTFIBhIBRhRFhT
8 simp32 KHLWHFThTFIBhIBRhRFhIB
9 eqid AtomsK=AtomsK
10 1 9 2 3 4 trlnidat KHLWHhThIBRhAtomsK
11 6 7 8 10 syl3anc KHLWHFThTFIBhIBRhRFRhAtomsK
12 11 adantr KHLWHFThTFIBhIBRhRFRhFAtomsKRhAtomsK
13 simp2l KHLWHFThTFIBhIBRhRFFT
14 simp31 KHLWHFThTFIBhIBRhRFFIB
15 1 9 2 3 4 trlnidat KHLWHFTFIBRFAtomsK
16 6 13 14 15 syl3anc KHLWHFThTFIBhIBRhRFRFAtomsK
17 16 adantr KHLWHFThTFIBhIBRhRFRhFAtomsKRFAtomsK
18 simpl33 KHLWHFThTFIBhIBRhRFRhFAtomsKRhRF
19 simpr KHLWHFThTFIBhIBRhRFRhFAtomsKRhFAtomsK
20 2 3 ltrnco KHLWHhTFThFT
21 6 7 13 20 syl3anc KHLWHFThTFIBhIBRhRFhFT
22 2 3 ltrncnv KHLWHFTF-1T
23 6 13 22 syl2anc KHLWHFThTFIBhIBRhRFF-1T
24 eqid K=K
25 eqid joinK=joinK
26 24 25 2 3 4 trlco KHLWHhFTF-1TRhFF-1KRhFjoinKRF-1
27 6 21 23 26 syl3anc KHLWHFThTFIBhIBRhRFRhFF-1KRhFjoinKRF-1
28 coass hFF-1=hFF-1
29 1 2 3 ltrn1o KHLWHFTF:B1-1 ontoB
30 6 13 29 syl2anc KHLWHFThTFIBhIBRhRFF:B1-1 ontoB
31 f1ococnv2 F:B1-1 ontoBFF-1=IB
32 30 31 syl KHLWHFThTFIBhIBRhRFFF-1=IB
33 32 coeq2d KHLWHFThTFIBhIBRhRFhFF-1=hIB
34 1 2 3 ltrn1o KHLWHhTh:B1-1 ontoB
35 6 7 34 syl2anc KHLWHFThTFIBhIBRhRFh:B1-1 ontoB
36 f1of h:B1-1 ontoBh:BB
37 fcoi1 h:BBhIB=h
38 35 36 37 3syl KHLWHFThTFIBhIBRhRFhIB=h
39 33 38 eqtrd KHLWHFThTFIBhIBRhRFhFF-1=h
40 28 39 eqtrid KHLWHFThTFIBhIBRhRFhFF-1=h
41 40 fveq2d KHLWHFThTFIBhIBRhRFRhFF-1=Rh
42 2 3 4 trlcnv KHLWHFTRF-1=RF
43 6 13 42 syl2anc KHLWHFThTFIBhIBRhRFRF-1=RF
44 43 oveq2d KHLWHFThTFIBhIBRhRFRhFjoinKRF-1=RhFjoinKRF
45 27 41 44 3brtr3d KHLWHFThTFIBhIBRhRFRhKRhFjoinKRF
46 45 adantr KHLWHFThTFIBhIBRhRFRhFAtomsKRhKRhFjoinKRF
47 24 25 9 hlatlej2 KHLRhFAtomsKRFAtomsKRFKRhFjoinKRF
48 5 19 17 47 syl3anc KHLWHFThTFIBhIBRhRFRhFAtomsKRFKRhFjoinKRF
49 5 hllatd KHLWHFThTFIBhIBRhRFRhFAtomsKKLat
50 1 9 atbase RhAtomsKRhB
51 12 50 syl KHLWHFThTFIBhIBRhRFRhFAtomsKRhB
52 1 9 atbase RFAtomsKRFB
53 17 52 syl KHLWHFThTFIBhIBRhRFRhFAtomsKRFB
54 1 25 9 hlatjcl KHLRhFAtomsKRFAtomsKRhFjoinKRFB
55 5 19 17 54 syl3anc KHLWHFThTFIBhIBRhRFRhFAtomsKRhFjoinKRFB
56 1 24 25 latjle12 KLatRhBRFBRhFjoinKRFBRhKRhFjoinKRFRFKRhFjoinKRFRhjoinKRFKRhFjoinKRF
57 49 51 53 55 56 syl13anc KHLWHFThTFIBhIBRhRFRhFAtomsKRhKRhFjoinKRFRFKRhFjoinKRFRhjoinKRFKRhFjoinKRF
58 46 48 57 mpbi2and KHLWHFThTFIBhIBRhRFRhFAtomsKRhjoinKRFKRhFjoinKRF
59 24 25 9 2atjlej KHLRhAtomsKRFAtomsKRhRFRhFAtomsKRFAtomsKRhjoinKRFKRhFjoinKRFRhFRF
60 5 12 17 18 19 17 58 59 syl133anc KHLWHFThTFIBhIBRhRFRhFAtomsKRhFRF
61 nelne2 RFAtomsK¬RhFAtomsKRFRhF
62 61 necomd RFAtomsK¬RhFAtomsKRhFRF
63 16 62 sylan KHLWHFThTFIBhIBRhRF¬RhFAtomsKRhFRF
64 60 63 pm2.61dan KHLWHFThTFIBhIBRhRFRhFRF