Metamath Proof Explorer


Theorem trlco

Description: The trace of a composition of translations is less than or equal to the join of their traces. Part of proof of Lemma G of Crawley p. 116, second paragraph on p. 117. (Contributed by NM, 2-Jun-2013)

Ref Expression
Hypotheses trlco.l ˙=K
trlco.j ˙=joinK
trlco.h H=LHypK
trlco.t T=LTrnKW
trlco.r R=trLKW
Assertion trlco KHLWHFTGTRFG˙RF˙RG

Proof

Step Hyp Ref Expression
1 trlco.l ˙=K
2 trlco.j ˙=joinK
3 trlco.h H=LHypK
4 trlco.t T=LTrnKW
5 trlco.r R=trLKW
6 eqid AtomsK=AtomsK
7 1 6 3 lhpexnle KHLWHpAtomsK¬p˙W
8 7 3ad2ant1 KHLWHFTGTpAtomsK¬p˙W
9 simpl1 KHLWHFTGTpAtomsK¬p˙WKHLWH
10 simpl2 KHLWHFTGTpAtomsK¬p˙WFT
11 simpl3 KHLWHFTGTpAtomsK¬p˙WGT
12 simpr KHLWHFTGTpAtomsK¬p˙WpAtomsK¬p˙W
13 eqid meetK=meetK
14 1 2 3 4 5 13 6 trlcolem KHLWHFTGTpAtomsK¬p˙WRFG˙RF˙RG
15 9 10 11 12 14 syl121anc KHLWHFTGTpAtomsK¬p˙WRFG˙RF˙RG
16 8 15 rexlimddv KHLWHFTGTRFG˙RF˙RG