Metamath Proof Explorer


Theorem trlco

Description: The trace of a composition of translations is less than or equal to the join of their traces. Part of proof of Lemma G of Crawley p. 116, second paragraph on p. 117. (Contributed by NM, 2-Jun-2013)

Ref Expression
Hypotheses trlco.l ˙ = K
trlco.j ˙ = join K
trlco.h H = LHyp K
trlco.t T = LTrn K W
trlco.r R = trL K W
Assertion trlco K HL W H F T G T R F G ˙ R F ˙ R G

Proof

Step Hyp Ref Expression
1 trlco.l ˙ = K
2 trlco.j ˙ = join K
3 trlco.h H = LHyp K
4 trlco.t T = LTrn K W
5 trlco.r R = trL K W
6 eqid Atoms K = Atoms K
7 1 6 3 lhpexnle K HL W H p Atoms K ¬ p ˙ W
8 7 3ad2ant1 K HL W H F T G T p Atoms K ¬ p ˙ W
9 simpl1 K HL W H F T G T p Atoms K ¬ p ˙ W K HL W H
10 simpl2 K HL W H F T G T p Atoms K ¬ p ˙ W F T
11 simpl3 K HL W H F T G T p Atoms K ¬ p ˙ W G T
12 simpr K HL W H F T G T p Atoms K ¬ p ˙ W p Atoms K ¬ p ˙ W
13 eqid meet K = meet K
14 1 2 3 4 5 13 6 trlcolem K HL W H F T G T p Atoms K ¬ p ˙ W R F G ˙ R F ˙ R G
15 9 10 11 12 14 syl121anc K HL W H F T G T p Atoms K ¬ p ˙ W R F G ˙ R F ˙ R G
16 8 15 rexlimddv K HL W H F T G T R F G ˙ R F ˙ R G