Metamath Proof Explorer


Theorem trlcone

Description: If two translations have different traces, the trace of their composition is also different. (Contributed by NM, 14-Jun-2013)

Ref Expression
Hypotheses trlcone.b B = Base K
trlcone.h H = LHyp K
trlcone.t T = LTrn K W
trlcone.r R = trL K W
Assertion trlcone K HL W H F T G T R F R G G I B R F R F G

Proof

Step Hyp Ref Expression
1 trlcone.b B = Base K
2 trlcone.h H = LHyp K
3 trlcone.t T = LTrn K W
4 trlcone.r R = trL K W
5 simpl3l K HL W H F T G T R F R G G I B R F Atoms K R F R G
6 simp11 K HL W H F T G T R F R G G I B R F Atoms K R F = R F G K HL W H
7 simp12l K HL W H F T G T R F R G G I B R F Atoms K R F = R F G F T
8 2 3 ltrncnv K HL W H F T F -1 T
9 6 7 8 syl2anc K HL W H F T G T R F R G G I B R F Atoms K R F = R F G F -1 T
10 simp12r K HL W H F T G T R F R G G I B R F Atoms K R F = R F G G T
11 2 3 ltrnco K HL W H F T G T F G T
12 6 7 10 11 syl3anc K HL W H F T G T R F R G G I B R F Atoms K R F = R F G F G T
13 eqid K = K
14 eqid join K = join K
15 13 14 2 3 4 trlco K HL W H F -1 T F G T R F -1 F G K R F -1 join K R F G
16 6 9 12 15 syl3anc K HL W H F T G T R F R G G I B R F Atoms K R F = R F G R F -1 F G K R F -1 join K R F G
17 1 2 3 ltrn1o K HL W H F T F : B 1-1 onto B
18 6 7 17 syl2anc K HL W H F T G T R F R G G I B R F Atoms K R F = R F G F : B 1-1 onto B
19 f1ococnv1 F : B 1-1 onto B F -1 F = I B
20 18 19 syl K HL W H F T G T R F R G G I B R F Atoms K R F = R F G F -1 F = I B
21 20 coeq1d K HL W H F T G T R F R G G I B R F Atoms K R F = R F G F -1 F G = I B G
22 1 2 3 ltrn1o K HL W H G T G : B 1-1 onto B
23 6 10 22 syl2anc K HL W H F T G T R F R G G I B R F Atoms K R F = R F G G : B 1-1 onto B
24 f1of G : B 1-1 onto B G : B B
25 fcoi2 G : B B I B G = G
26 23 24 25 3syl K HL W H F T G T R F R G G I B R F Atoms K R F = R F G I B G = G
27 21 26 eqtrd K HL W H F T G T R F R G G I B R F Atoms K R F = R F G F -1 F G = G
28 coass F -1 F G = F -1 F G
29 27 28 eqtr3di K HL W H F T G T R F R G G I B R F Atoms K R F = R F G G = F -1 F G
30 29 fveq2d K HL W H F T G T R F R G G I B R F Atoms K R F = R F G R G = R F -1 F G
31 simp11l K HL W H F T G T R F R G G I B R F Atoms K R F = R F G K HL
32 simp2 K HL W H F T G T R F R G G I B R F Atoms K R F = R F G R F Atoms K
33 eqid Atoms K = Atoms K
34 14 33 hlatjidm K HL R F Atoms K R F join K R F = R F
35 31 32 34 syl2anc K HL W H F T G T R F R G G I B R F Atoms K R F = R F G R F join K R F = R F
36 2 3 4 trlcnv K HL W H F T R F -1 = R F
37 6 7 36 syl2anc K HL W H F T G T R F R G G I B R F Atoms K R F = R F G R F -1 = R F
38 37 eqcomd K HL W H F T G T R F R G G I B R F Atoms K R F = R F G R F = R F -1
39 simp3 K HL W H F T G T R F R G G I B R F Atoms K R F = R F G R F = R F G
40 38 39 oveq12d K HL W H F T G T R F R G G I B R F Atoms K R F = R F G R F join K R F = R F -1 join K R F G
41 35 40 eqtr3d K HL W H F T G T R F R G G I B R F Atoms K R F = R F G R F = R F -1 join K R F G
42 16 30 41 3brtr4d K HL W H F T G T R F R G G I B R F Atoms K R F = R F G R G K R F
43 hlatl K HL K AtLat
44 31 43 syl K HL W H F T G T R F R G G I B R F Atoms K R F = R F G K AtLat
45 simp13r K HL W H F T G T R F R G G I B R F Atoms K R F = R F G G I B
46 1 33 2 3 4 trlnidat K HL W H G T G I B R G Atoms K
47 6 10 45 46 syl3anc K HL W H F T G T R F R G G I B R F Atoms K R F = R F G R G Atoms K
48 13 33 atcmp K AtLat R G Atoms K R F Atoms K R G K R F R G = R F
49 44 47 32 48 syl3anc K HL W H F T G T R F R G G I B R F Atoms K R F = R F G R G K R F R G = R F
50 42 49 mpbid K HL W H F T G T R F R G G I B R F Atoms K R F = R F G R G = R F
51 50 eqcomd K HL W H F T G T R F R G G I B R F Atoms K R F = R F G R F = R G
52 51 3expia K HL W H F T G T R F R G G I B R F Atoms K R F = R F G R F = R G
53 52 necon3d K HL W H F T G T R F R G G I B R F Atoms K R F R G R F R F G
54 5 53 mpd K HL W H F T G T R F R G G I B R F Atoms K R F R F G
55 simpl3r K HL W H F T G T R F R G G I B R F = 0. K G I B
56 simpl1 K HL W H F T G T R F R G G I B R F = 0. K K HL W H
57 simpl2r K HL W H F T G T R F R G G I B R F = 0. K G T
58 eqid 0. K = 0. K
59 1 58 2 3 4 trlid0b K HL W H G T G = I B R G = 0. K
60 56 57 59 syl2anc K HL W H F T G T R F R G G I B R F = 0. K G = I B R G = 0. K
61 60 necon3bid K HL W H F T G T R F R G G I B R F = 0. K G I B R G 0. K
62 55 61 mpbid K HL W H F T G T R F R G G I B R F = 0. K R G 0. K
63 62 necomd K HL W H F T G T R F R G G I B R F = 0. K 0. K R G
64 simpr K HL W H F T G T R F R G G I B R F = 0. K R F = 0. K
65 simpl2l K HL W H F T G T R F R G G I B R F = 0. K F T
66 1 58 2 3 4 trlid0b K HL W H F T F = I B R F = 0. K
67 56 65 66 syl2anc K HL W H F T G T R F R G G I B R F = 0. K F = I B R F = 0. K
68 64 67 mpbird K HL W H F T G T R F R G G I B R F = 0. K F = I B
69 68 coeq1d K HL W H F T G T R F R G G I B R F = 0. K F G = I B G
70 56 57 22 syl2anc K HL W H F T G T R F R G G I B R F = 0. K G : B 1-1 onto B
71 70 24 25 3syl K HL W H F T G T R F R G G I B R F = 0. K I B G = G
72 69 71 eqtrd K HL W H F T G T R F R G G I B R F = 0. K F G = G
73 72 fveq2d K HL W H F T G T R F R G G I B R F = 0. K R F G = R G
74 63 64 73 3netr4d K HL W H F T G T R F R G G I B R F = 0. K R F R F G
75 simp1 K HL W H F T G T R F R G G I B K HL W H
76 simp2l K HL W H F T G T R F R G G I B F T
77 58 33 2 3 4 trlator0 K HL W H F T R F Atoms K R F = 0. K
78 75 76 77 syl2anc K HL W H F T G T R F R G G I B R F Atoms K R F = 0. K
79 54 74 78 mpjaodan K HL W H F T G T R F R G G I B R F R F G