Step |
Hyp |
Ref |
Expression |
1 |
|
trlcone.b |
|
2 |
|
trlcone.h |
|
3 |
|
trlcone.t |
|
4 |
|
trlcone.r |
|
5 |
|
simpl3l |
|
6 |
|
simp11 |
|
7 |
|
simp12l |
|
8 |
2 3
|
ltrncnv |
|
9 |
6 7 8
|
syl2anc |
|
10 |
|
simp12r |
|
11 |
2 3
|
ltrnco |
|
12 |
6 7 10 11
|
syl3anc |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
13 14 2 3 4
|
trlco |
|
16 |
6 9 12 15
|
syl3anc |
|
17 |
1 2 3
|
ltrn1o |
|
18 |
6 7 17
|
syl2anc |
|
19 |
|
f1ococnv1 |
|
20 |
18 19
|
syl |
|
21 |
20
|
coeq1d |
|
22 |
1 2 3
|
ltrn1o |
|
23 |
6 10 22
|
syl2anc |
|
24 |
|
f1of |
|
25 |
|
fcoi2 |
|
26 |
23 24 25
|
3syl |
|
27 |
21 26
|
eqtrd |
|
28 |
|
coass |
|
29 |
27 28
|
eqtr3di |
|
30 |
29
|
fveq2d |
|
31 |
|
simp11l |
|
32 |
|
simp2 |
|
33 |
|
eqid |
|
34 |
14 33
|
hlatjidm |
|
35 |
31 32 34
|
syl2anc |
|
36 |
2 3 4
|
trlcnv |
|
37 |
6 7 36
|
syl2anc |
|
38 |
37
|
eqcomd |
|
39 |
|
simp3 |
|
40 |
38 39
|
oveq12d |
|
41 |
35 40
|
eqtr3d |
|
42 |
16 30 41
|
3brtr4d |
|
43 |
|
hlatl |
|
44 |
31 43
|
syl |
|
45 |
|
simp13r |
|
46 |
1 33 2 3 4
|
trlnidat |
|
47 |
6 10 45 46
|
syl3anc |
|
48 |
13 33
|
atcmp |
|
49 |
44 47 32 48
|
syl3anc |
|
50 |
42 49
|
mpbid |
|
51 |
50
|
eqcomd |
|
52 |
51
|
3expia |
|
53 |
52
|
necon3d |
|
54 |
5 53
|
mpd |
|
55 |
|
simpl3r |
|
56 |
|
simpl1 |
|
57 |
|
simpl2r |
|
58 |
|
eqid |
|
59 |
1 58 2 3 4
|
trlid0b |
|
60 |
56 57 59
|
syl2anc |
|
61 |
60
|
necon3bid |
|
62 |
55 61
|
mpbid |
|
63 |
62
|
necomd |
|
64 |
|
simpr |
|
65 |
|
simpl2l |
|
66 |
1 58 2 3 4
|
trlid0b |
|
67 |
56 65 66
|
syl2anc |
|
68 |
64 67
|
mpbird |
|
69 |
68
|
coeq1d |
|
70 |
56 57 22
|
syl2anc |
|
71 |
70 24 25
|
3syl |
|
72 |
69 71
|
eqtrd |
|
73 |
72
|
fveq2d |
|
74 |
63 64 73
|
3netr4d |
|
75 |
|
simp1 |
|
76 |
|
simp2l |
|
77 |
58 33 2 3 4
|
trlator0 |
|
78 |
75 76 77
|
syl2anc |
|
79 |
54 74 78
|
mpjaodan |
|