Metamath Proof Explorer


Theorem trlcone

Description: If two translations have different traces, the trace of their composition is also different. (Contributed by NM, 14-Jun-2013)

Ref Expression
Hypotheses trlcone.b B=BaseK
trlcone.h H=LHypK
trlcone.t T=LTrnKW
trlcone.r R=trLKW
Assertion trlcone KHLWHFTGTRFRGGIBRFRFG

Proof

Step Hyp Ref Expression
1 trlcone.b B=BaseK
2 trlcone.h H=LHypK
3 trlcone.t T=LTrnKW
4 trlcone.r R=trLKW
5 simpl3l KHLWHFTGTRFRGGIBRFAtomsKRFRG
6 simp11 KHLWHFTGTRFRGGIBRFAtomsKRF=RFGKHLWH
7 simp12l KHLWHFTGTRFRGGIBRFAtomsKRF=RFGFT
8 2 3 ltrncnv KHLWHFTF-1T
9 6 7 8 syl2anc KHLWHFTGTRFRGGIBRFAtomsKRF=RFGF-1T
10 simp12r KHLWHFTGTRFRGGIBRFAtomsKRF=RFGGT
11 2 3 ltrnco KHLWHFTGTFGT
12 6 7 10 11 syl3anc KHLWHFTGTRFRGGIBRFAtomsKRF=RFGFGT
13 eqid K=K
14 eqid joinK=joinK
15 13 14 2 3 4 trlco KHLWHF-1TFGTRF-1FGKRF-1joinKRFG
16 6 9 12 15 syl3anc KHLWHFTGTRFRGGIBRFAtomsKRF=RFGRF-1FGKRF-1joinKRFG
17 1 2 3 ltrn1o KHLWHFTF:B1-1 ontoB
18 6 7 17 syl2anc KHLWHFTGTRFRGGIBRFAtomsKRF=RFGF:B1-1 ontoB
19 f1ococnv1 F:B1-1 ontoBF-1F=IB
20 18 19 syl KHLWHFTGTRFRGGIBRFAtomsKRF=RFGF-1F=IB
21 20 coeq1d KHLWHFTGTRFRGGIBRFAtomsKRF=RFGF-1FG=IBG
22 1 2 3 ltrn1o KHLWHGTG:B1-1 ontoB
23 6 10 22 syl2anc KHLWHFTGTRFRGGIBRFAtomsKRF=RFGG:B1-1 ontoB
24 f1of G:B1-1 ontoBG:BB
25 fcoi2 G:BBIBG=G
26 23 24 25 3syl KHLWHFTGTRFRGGIBRFAtomsKRF=RFGIBG=G
27 21 26 eqtrd KHLWHFTGTRFRGGIBRFAtomsKRF=RFGF-1FG=G
28 coass F-1FG=F-1FG
29 27 28 eqtr3di KHLWHFTGTRFRGGIBRFAtomsKRF=RFGG=F-1FG
30 29 fveq2d KHLWHFTGTRFRGGIBRFAtomsKRF=RFGRG=RF-1FG
31 simp11l KHLWHFTGTRFRGGIBRFAtomsKRF=RFGKHL
32 simp2 KHLWHFTGTRFRGGIBRFAtomsKRF=RFGRFAtomsK
33 eqid AtomsK=AtomsK
34 14 33 hlatjidm KHLRFAtomsKRFjoinKRF=RF
35 31 32 34 syl2anc KHLWHFTGTRFRGGIBRFAtomsKRF=RFGRFjoinKRF=RF
36 2 3 4 trlcnv KHLWHFTRF-1=RF
37 6 7 36 syl2anc KHLWHFTGTRFRGGIBRFAtomsKRF=RFGRF-1=RF
38 37 eqcomd KHLWHFTGTRFRGGIBRFAtomsKRF=RFGRF=RF-1
39 simp3 KHLWHFTGTRFRGGIBRFAtomsKRF=RFGRF=RFG
40 38 39 oveq12d KHLWHFTGTRFRGGIBRFAtomsKRF=RFGRFjoinKRF=RF-1joinKRFG
41 35 40 eqtr3d KHLWHFTGTRFRGGIBRFAtomsKRF=RFGRF=RF-1joinKRFG
42 16 30 41 3brtr4d KHLWHFTGTRFRGGIBRFAtomsKRF=RFGRGKRF
43 hlatl KHLKAtLat
44 31 43 syl KHLWHFTGTRFRGGIBRFAtomsKRF=RFGKAtLat
45 simp13r KHLWHFTGTRFRGGIBRFAtomsKRF=RFGGIB
46 1 33 2 3 4 trlnidat KHLWHGTGIBRGAtomsK
47 6 10 45 46 syl3anc KHLWHFTGTRFRGGIBRFAtomsKRF=RFGRGAtomsK
48 13 33 atcmp KAtLatRGAtomsKRFAtomsKRGKRFRG=RF
49 44 47 32 48 syl3anc KHLWHFTGTRFRGGIBRFAtomsKRF=RFGRGKRFRG=RF
50 42 49 mpbid KHLWHFTGTRFRGGIBRFAtomsKRF=RFGRG=RF
51 50 eqcomd KHLWHFTGTRFRGGIBRFAtomsKRF=RFGRF=RG
52 51 3expia KHLWHFTGTRFRGGIBRFAtomsKRF=RFGRF=RG
53 52 necon3d KHLWHFTGTRFRGGIBRFAtomsKRFRGRFRFG
54 5 53 mpd KHLWHFTGTRFRGGIBRFAtomsKRFRFG
55 simpl3r KHLWHFTGTRFRGGIBRF=0.KGIB
56 simpl1 KHLWHFTGTRFRGGIBRF=0.KKHLWH
57 simpl2r KHLWHFTGTRFRGGIBRF=0.KGT
58 eqid 0.K=0.K
59 1 58 2 3 4 trlid0b KHLWHGTG=IBRG=0.K
60 56 57 59 syl2anc KHLWHFTGTRFRGGIBRF=0.KG=IBRG=0.K
61 60 necon3bid KHLWHFTGTRFRGGIBRF=0.KGIBRG0.K
62 55 61 mpbid KHLWHFTGTRFRGGIBRF=0.KRG0.K
63 62 necomd KHLWHFTGTRFRGGIBRF=0.K0.KRG
64 simpr KHLWHFTGTRFRGGIBRF=0.KRF=0.K
65 simpl2l KHLWHFTGTRFRGGIBRF=0.KFT
66 1 58 2 3 4 trlid0b KHLWHFTF=IBRF=0.K
67 56 65 66 syl2anc KHLWHFTGTRFRGGIBRF=0.KF=IBRF=0.K
68 64 67 mpbird KHLWHFTGTRFRGGIBRF=0.KF=IB
69 68 coeq1d KHLWHFTGTRFRGGIBRF=0.KFG=IBG
70 56 57 22 syl2anc KHLWHFTGTRFRGGIBRF=0.KG:B1-1 ontoB
71 70 24 25 3syl KHLWHFTGTRFRGGIBRF=0.KIBG=G
72 69 71 eqtrd KHLWHFTGTRFRGGIBRF=0.KFG=G
73 72 fveq2d KHLWHFTGTRFRGGIBRF=0.KRFG=RG
74 63 64 73 3netr4d KHLWHFTGTRFRGGIBRF=0.KRFRFG
75 simp1 KHLWHFTGTRFRGGIBKHLWH
76 simp2l KHLWHFTGTRFRGGIBFT
77 58 33 2 3 4 trlator0 KHLWHFTRFAtomsKRF=0.K
78 75 76 77 syl2anc KHLWHFTGTRFRGGIBRFAtomsKRF=0.K
79 54 74 78 mpjaodan KHLWHFTGTRFRGGIBRFRFG