Metamath Proof Explorer


Theorem trlator0

Description: The trace of a lattice translation is an atom or zero. (Contributed by NM, 5-May-2013)

Ref Expression
Hypotheses trl0a.z 0˙=0.K
trl0a.a A=AtomsK
trl0a.h H=LHypK
trl0a.t T=LTrnKW
trl0a.r R=trLKW
Assertion trlator0 KHLWHFTRFARF=0˙

Proof

Step Hyp Ref Expression
1 trl0a.z 0˙=0.K
2 trl0a.a A=AtomsK
3 trl0a.h H=LHypK
4 trl0a.t T=LTrnKW
5 trl0a.r R=trLKW
6 df-ne RF0˙¬RF=0˙
7 eqid K=K
8 7 2 3 lhpexnle KHLWHpA¬pKW
9 8 ad2antrr KHLWHFTRF0˙pA¬pKW
10 simplll KHLWHFTRF0˙pA¬pKWKHLWH
11 simpr KHLWHFTRF0˙pA¬pKWpA¬pKW
12 simpllr KHLWHFTRF0˙pA¬pKWFT
13 simplr KHLWHFTRF0˙pA¬pKWRF0˙
14 10 adantr KHLWHFTRF0˙pA¬pKWFp=pKHLWH
15 simplr KHLWHFTRF0˙pA¬pKWFp=ppA¬pKW
16 12 adantr KHLWHFTRF0˙pA¬pKWFp=pFT
17 simpr KHLWHFTRF0˙pA¬pKWFp=pFp=p
18 7 1 2 3 4 5 trl0 KHLWHpA¬pKWFTFp=pRF=0˙
19 14 15 16 17 18 syl112anc KHLWHFTRF0˙pA¬pKWFp=pRF=0˙
20 19 ex KHLWHFTRF0˙pA¬pKWFp=pRF=0˙
21 20 necon3d KHLWHFTRF0˙pA¬pKWRF0˙Fpp
22 13 21 mpd KHLWHFTRF0˙pA¬pKWFpp
23 7 2 3 4 5 trlat KHLWHpA¬pKWFTFppRFA
24 10 11 12 22 23 syl112anc KHLWHFTRF0˙pA¬pKWRFA
25 9 24 rexlimddv KHLWHFTRF0˙RFA
26 25 ex KHLWHFTRF0˙RFA
27 6 26 biimtrrid KHLWHFT¬RF=0˙RFA
28 27 orrd KHLWHFTRF=0˙RFA
29 28 orcomd KHLWHFTRFARF=0˙