Metamath Proof Explorer


Theorem trlat

Description: If an atom differs from its translation, the trace is an atom. Equation above Lemma C in Crawley p. 112. (Contributed by NM, 23-May-2012)

Ref Expression
Hypotheses trlat.l ˙ = K
trlat.a A = Atoms K
trlat.h H = LHyp K
trlat.t T = LTrn K W
trlat.r R = trL K W
Assertion trlat K HL W H P A ¬ P ˙ W F T F P P R F A

Proof

Step Hyp Ref Expression
1 trlat.l ˙ = K
2 trlat.a A = Atoms K
3 trlat.h H = LHyp K
4 trlat.t T = LTrn K W
5 trlat.r R = trL K W
6 simp1 K HL W H P A ¬ P ˙ W F T F P P K HL W H
7 simp3l K HL W H P A ¬ P ˙ W F T F P P F T
8 simp2 K HL W H P A ¬ P ˙ W F T F P P P A ¬ P ˙ W
9 eqid join K = join K
10 eqid meet K = meet K
11 1 9 10 2 3 4 5 trlval2 K HL W H F T P A ¬ P ˙ W R F = P join K F P meet K W
12 6 7 8 11 syl3anc K HL W H P A ¬ P ˙ W F T F P P R F = P join K F P meet K W
13 simp2l K HL W H P A ¬ P ˙ W F T F P P P A
14 1 2 3 4 ltrnat K HL W H F T P A F P A
15 6 7 13 14 syl3anc K HL W H P A ¬ P ˙ W F T F P P F P A
16 simp3r K HL W H P A ¬ P ˙ W F T F P P F P P
17 16 necomd K HL W H P A ¬ P ˙ W F T F P P P F P
18 1 9 10 2 3 lhpat K HL W H P A ¬ P ˙ W F P A P F P P join K F P meet K W A
19 6 8 15 17 18 syl112anc K HL W H P A ¬ P ˙ W F T F P P P join K F P meet K W A
20 12 19 eqeltrd K HL W H P A ¬ P ˙ W F T F P P R F A