Metamath Proof Explorer


Theorem lhpat

Description: Create an atom under a co-atom. Part of proof of Lemma B in Crawley p. 112. (Contributed by NM, 23-May-2012)

Ref Expression
Hypotheses lhpat.l ˙ = K
lhpat.j ˙ = join K
lhpat.m ˙ = meet K
lhpat.a A = Atoms K
lhpat.h H = LHyp K
Assertion lhpat K HL W H P A ¬ P ˙ W Q A P Q P ˙ Q ˙ W A

Proof

Step Hyp Ref Expression
1 lhpat.l ˙ = K
2 lhpat.j ˙ = join K
3 lhpat.m ˙ = meet K
4 lhpat.a A = Atoms K
5 lhpat.h H = LHyp K
6 simp1l K HL W H P A ¬ P ˙ W Q A P Q K HL
7 simp2l K HL W H P A ¬ P ˙ W Q A P Q P A
8 simp3l K HL W H P A ¬ P ˙ W Q A P Q Q A
9 simp1r K HL W H P A ¬ P ˙ W Q A P Q W H
10 eqid Base K = Base K
11 10 5 lhpbase W H W Base K
12 9 11 syl K HL W H P A ¬ P ˙ W Q A P Q W Base K
13 simp3r K HL W H P A ¬ P ˙ W Q A P Q P Q
14 eqid 1. K = 1. K
15 eqid K = K
16 14 15 5 lhp1cvr K HL W H W K 1. K
17 16 3ad2ant1 K HL W H P A ¬ P ˙ W Q A P Q W K 1. K
18 simp2r K HL W H P A ¬ P ˙ W Q A P Q ¬ P ˙ W
19 10 1 2 3 14 15 4 1cvrat K HL P A Q A W Base K P Q W K 1. K ¬ P ˙ W P ˙ Q ˙ W A
20 6 7 8 12 13 17 18 19 syl133anc K HL W H P A ¬ P ˙ W Q A P Q P ˙ Q ˙ W A