Metamath Proof Explorer


Theorem lhpat4N

Description: Property of an atom under a co-atom. (Contributed by NM, 24-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses lhpat.l ˙ = K
lhpat.j ˙ = join K
lhpat.m ˙ = meet K
lhpat.a A = Atoms K
lhpat.h H = LHyp K
Assertion lhpat4N K HL W H P A ¬ P ˙ W U A U ˙ W P ˙ U ˙ W = U

Proof

Step Hyp Ref Expression
1 lhpat.l ˙ = K
2 lhpat.j ˙ = join K
3 lhpat.m ˙ = meet K
4 lhpat.a A = Atoms K
5 lhpat.h H = LHyp K
6 simp1 K HL W H P A ¬ P ˙ W U A U ˙ W K HL W H
7 simp2 K HL W H P A ¬ P ˙ W U A U ˙ W P A ¬ P ˙ W
8 simp3l K HL W H P A ¬ P ˙ W U A U ˙ W U A
9 eqid Base K = Base K
10 9 4 atbase U A U Base K
11 8 10 syl K HL W H P A ¬ P ˙ W U A U ˙ W U Base K
12 simp3r K HL W H P A ¬ P ˙ W U A U ˙ W U ˙ W
13 9 1 2 3 4 5 lhple K HL W H P A ¬ P ˙ W U Base K U ˙ W P ˙ U ˙ W = U
14 6 7 11 12 13 syl112anc K HL W H P A ¬ P ˙ W U A U ˙ W P ˙ U ˙ W = U