Metamath Proof Explorer


Theorem lhpat4N

Description: Property of an atom under a co-atom. (Contributed by NM, 24-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses lhpat.l = ( le ‘ 𝐾 )
lhpat.j = ( join ‘ 𝐾 )
lhpat.m = ( meet ‘ 𝐾 )
lhpat.a 𝐴 = ( Atoms ‘ 𝐾 )
lhpat.h 𝐻 = ( LHyp ‘ 𝐾 )
Assertion lhpat4N ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ) → ( ( 𝑃 𝑈 ) 𝑊 ) = 𝑈 )

Proof

Step Hyp Ref Expression
1 lhpat.l = ( le ‘ 𝐾 )
2 lhpat.j = ( join ‘ 𝐾 )
3 lhpat.m = ( meet ‘ 𝐾 )
4 lhpat.a 𝐴 = ( Atoms ‘ 𝐾 )
5 lhpat.h 𝐻 = ( LHyp ‘ 𝐾 )
6 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
7 simp2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
8 simp3l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ) → 𝑈𝐴 )
9 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
10 9 4 atbase ( 𝑈𝐴𝑈 ∈ ( Base ‘ 𝐾 ) )
11 8 10 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ) → 𝑈 ∈ ( Base ‘ 𝐾 ) )
12 simp3r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ) → 𝑈 𝑊 )
13 9 1 2 3 4 5 lhple ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑈 ∈ ( Base ‘ 𝐾 ) ∧ 𝑈 𝑊 ) ) → ( ( 𝑃 𝑈 ) 𝑊 ) = 𝑈 )
14 6 7 11 12 13 syl112anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑈𝐴𝑈 𝑊 ) ) → ( ( 𝑃 𝑈 ) 𝑊 ) = 𝑈 )