Metamath Proof Explorer


Theorem lhple

Description: Property of a lattice element under a co-atom. (Contributed by NM, 28-Feb-2014)

Ref Expression
Hypotheses lhple.b B = Base K
lhple.l ˙ = K
lhple.j ˙ = join K
lhple.m ˙ = meet K
lhple.a A = Atoms K
lhple.h H = LHyp K
Assertion lhple K HL W H P A ¬ P ˙ W X B X ˙ W P ˙ X ˙ W = X

Proof

Step Hyp Ref Expression
1 lhple.b B = Base K
2 lhple.l ˙ = K
3 lhple.j ˙ = join K
4 lhple.m ˙ = meet K
5 lhple.a A = Atoms K
6 lhple.h H = LHyp K
7 simp1l K HL W H P A ¬ P ˙ W X B X ˙ W K HL
8 7 hllatd K HL W H P A ¬ P ˙ W X B X ˙ W K Lat
9 simp2l K HL W H P A ¬ P ˙ W X B X ˙ W P A
10 1 5 atbase P A P B
11 9 10 syl K HL W H P A ¬ P ˙ W X B X ˙ W P B
12 simp3l K HL W H P A ¬ P ˙ W X B X ˙ W X B
13 1 3 latjcom K Lat P B X B P ˙ X = X ˙ P
14 8 11 12 13 syl3anc K HL W H P A ¬ P ˙ W X B X ˙ W P ˙ X = X ˙ P
15 14 oveq1d K HL W H P A ¬ P ˙ W X B X ˙ W P ˙ X ˙ W = X ˙ P ˙ W
16 simp1 K HL W H P A ¬ P ˙ W X B X ˙ W K HL W H
17 simp3r K HL W H P A ¬ P ˙ W X B X ˙ W X ˙ W
18 1 2 3 4 6 lhpmod6i1 K HL W H X B P B X ˙ W X ˙ P ˙ W = X ˙ P ˙ W
19 16 12 11 17 18 syl121anc K HL W H P A ¬ P ˙ W X B X ˙ W X ˙ P ˙ W = X ˙ P ˙ W
20 eqid 0. K = 0. K
21 2 4 20 5 6 lhpmat K HL W H P A ¬ P ˙ W P ˙ W = 0. K
22 21 3adant3 K HL W H P A ¬ P ˙ W X B X ˙ W P ˙ W = 0. K
23 22 oveq2d K HL W H P A ¬ P ˙ W X B X ˙ W X ˙ P ˙ W = X ˙ 0. K
24 hlol K HL K OL
25 7 24 syl K HL W H P A ¬ P ˙ W X B X ˙ W K OL
26 1 3 20 olj01 K OL X B X ˙ 0. K = X
27 25 12 26 syl2anc K HL W H P A ¬ P ˙ W X B X ˙ W X ˙ 0. K = X
28 23 27 eqtrd K HL W H P A ¬ P ˙ W X B X ˙ W X ˙ P ˙ W = X
29 15 19 28 3eqtr2d K HL W H P A ¬ P ˙ W X B X ˙ W P ˙ X ˙ W = X