Step |
Hyp |
Ref |
Expression |
1 |
|
trlcone.b |
|- B = ( Base ` K ) |
2 |
|
trlcone.h |
|- H = ( LHyp ` K ) |
3 |
|
trlcone.t |
|- T = ( ( LTrn ` K ) ` W ) |
4 |
|
trlcone.r |
|- R = ( ( trL ` K ) ` W ) |
5 |
|
simpl3l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) ) -> ( R ` F ) =/= ( R ` G ) ) |
6 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( R ` F ) = ( R ` ( F o. G ) ) ) -> ( K e. HL /\ W e. H ) ) |
7 |
|
simp12l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( R ` F ) = ( R ` ( F o. G ) ) ) -> F e. T ) |
8 |
2 3
|
ltrncnv |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> `' F e. T ) |
9 |
6 7 8
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( R ` F ) = ( R ` ( F o. G ) ) ) -> `' F e. T ) |
10 |
|
simp12r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( R ` F ) = ( R ` ( F o. G ) ) ) -> G e. T ) |
11 |
2 3
|
ltrnco |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) -> ( F o. G ) e. T ) |
12 |
6 7 10 11
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( R ` F ) = ( R ` ( F o. G ) ) ) -> ( F o. G ) e. T ) |
13 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
14 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
15 |
13 14 2 3 4
|
trlco |
|- ( ( ( K e. HL /\ W e. H ) /\ `' F e. T /\ ( F o. G ) e. T ) -> ( R ` ( `' F o. ( F o. G ) ) ) ( le ` K ) ( ( R ` `' F ) ( join ` K ) ( R ` ( F o. G ) ) ) ) |
16 |
6 9 12 15
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( R ` F ) = ( R ` ( F o. G ) ) ) -> ( R ` ( `' F o. ( F o. G ) ) ) ( le ` K ) ( ( R ` `' F ) ( join ` K ) ( R ` ( F o. G ) ) ) ) |
17 |
1 2 3
|
ltrn1o |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> F : B -1-1-onto-> B ) |
18 |
6 7 17
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( R ` F ) = ( R ` ( F o. G ) ) ) -> F : B -1-1-onto-> B ) |
19 |
|
f1ococnv1 |
|- ( F : B -1-1-onto-> B -> ( `' F o. F ) = ( _I |` B ) ) |
20 |
18 19
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( R ` F ) = ( R ` ( F o. G ) ) ) -> ( `' F o. F ) = ( _I |` B ) ) |
21 |
20
|
coeq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( R ` F ) = ( R ` ( F o. G ) ) ) -> ( ( `' F o. F ) o. G ) = ( ( _I |` B ) o. G ) ) |
22 |
1 2 3
|
ltrn1o |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> G : B -1-1-onto-> B ) |
23 |
6 10 22
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( R ` F ) = ( R ` ( F o. G ) ) ) -> G : B -1-1-onto-> B ) |
24 |
|
f1of |
|- ( G : B -1-1-onto-> B -> G : B --> B ) |
25 |
|
fcoi2 |
|- ( G : B --> B -> ( ( _I |` B ) o. G ) = G ) |
26 |
23 24 25
|
3syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( R ` F ) = ( R ` ( F o. G ) ) ) -> ( ( _I |` B ) o. G ) = G ) |
27 |
21 26
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( R ` F ) = ( R ` ( F o. G ) ) ) -> ( ( `' F o. F ) o. G ) = G ) |
28 |
|
coass |
|- ( ( `' F o. F ) o. G ) = ( `' F o. ( F o. G ) ) |
29 |
27 28
|
eqtr3di |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( R ` F ) = ( R ` ( F o. G ) ) ) -> G = ( `' F o. ( F o. G ) ) ) |
30 |
29
|
fveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( R ` F ) = ( R ` ( F o. G ) ) ) -> ( R ` G ) = ( R ` ( `' F o. ( F o. G ) ) ) ) |
31 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( R ` F ) = ( R ` ( F o. G ) ) ) -> K e. HL ) |
32 |
|
simp2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( R ` F ) = ( R ` ( F o. G ) ) ) -> ( R ` F ) e. ( Atoms ` K ) ) |
33 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
34 |
14 33
|
hlatjidm |
|- ( ( K e. HL /\ ( R ` F ) e. ( Atoms ` K ) ) -> ( ( R ` F ) ( join ` K ) ( R ` F ) ) = ( R ` F ) ) |
35 |
31 32 34
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( R ` F ) = ( R ` ( F o. G ) ) ) -> ( ( R ` F ) ( join ` K ) ( R ` F ) ) = ( R ` F ) ) |
36 |
2 3 4
|
trlcnv |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( R ` `' F ) = ( R ` F ) ) |
37 |
6 7 36
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( R ` F ) = ( R ` ( F o. G ) ) ) -> ( R ` `' F ) = ( R ` F ) ) |
38 |
37
|
eqcomd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( R ` F ) = ( R ` ( F o. G ) ) ) -> ( R ` F ) = ( R ` `' F ) ) |
39 |
|
simp3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( R ` F ) = ( R ` ( F o. G ) ) ) -> ( R ` F ) = ( R ` ( F o. G ) ) ) |
40 |
38 39
|
oveq12d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( R ` F ) = ( R ` ( F o. G ) ) ) -> ( ( R ` F ) ( join ` K ) ( R ` F ) ) = ( ( R ` `' F ) ( join ` K ) ( R ` ( F o. G ) ) ) ) |
41 |
35 40
|
eqtr3d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( R ` F ) = ( R ` ( F o. G ) ) ) -> ( R ` F ) = ( ( R ` `' F ) ( join ` K ) ( R ` ( F o. G ) ) ) ) |
42 |
16 30 41
|
3brtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( R ` F ) = ( R ` ( F o. G ) ) ) -> ( R ` G ) ( le ` K ) ( R ` F ) ) |
43 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
44 |
31 43
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( R ` F ) = ( R ` ( F o. G ) ) ) -> K e. AtLat ) |
45 |
|
simp13r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( R ` F ) = ( R ` ( F o. G ) ) ) -> G =/= ( _I |` B ) ) |
46 |
1 33 2 3 4
|
trlnidat |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ G =/= ( _I |` B ) ) -> ( R ` G ) e. ( Atoms ` K ) ) |
47 |
6 10 45 46
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( R ` F ) = ( R ` ( F o. G ) ) ) -> ( R ` G ) e. ( Atoms ` K ) ) |
48 |
13 33
|
atcmp |
|- ( ( K e. AtLat /\ ( R ` G ) e. ( Atoms ` K ) /\ ( R ` F ) e. ( Atoms ` K ) ) -> ( ( R ` G ) ( le ` K ) ( R ` F ) <-> ( R ` G ) = ( R ` F ) ) ) |
49 |
44 47 32 48
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( R ` F ) = ( R ` ( F o. G ) ) ) -> ( ( R ` G ) ( le ` K ) ( R ` F ) <-> ( R ` G ) = ( R ` F ) ) ) |
50 |
42 49
|
mpbid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( R ` F ) = ( R ` ( F o. G ) ) ) -> ( R ` G ) = ( R ` F ) ) |
51 |
50
|
eqcomd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) /\ ( R ` F ) = ( R ` ( F o. G ) ) ) -> ( R ` F ) = ( R ` G ) ) |
52 |
51
|
3expia |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) ) -> ( ( R ` F ) = ( R ` ( F o. G ) ) -> ( R ` F ) = ( R ` G ) ) ) |
53 |
52
|
necon3d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) ) -> ( ( R ` F ) =/= ( R ` G ) -> ( R ` F ) =/= ( R ` ( F o. G ) ) ) ) |
54 |
5 53
|
mpd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) e. ( Atoms ` K ) ) -> ( R ` F ) =/= ( R ` ( F o. G ) ) ) |
55 |
|
simpl3r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) = ( 0. ` K ) ) -> G =/= ( _I |` B ) ) |
56 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) = ( 0. ` K ) ) -> ( K e. HL /\ W e. H ) ) |
57 |
|
simpl2r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) = ( 0. ` K ) ) -> G e. T ) |
58 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
59 |
1 58 2 3 4
|
trlid0b |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> ( G = ( _I |` B ) <-> ( R ` G ) = ( 0. ` K ) ) ) |
60 |
56 57 59
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) = ( 0. ` K ) ) -> ( G = ( _I |` B ) <-> ( R ` G ) = ( 0. ` K ) ) ) |
61 |
60
|
necon3bid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) = ( 0. ` K ) ) -> ( G =/= ( _I |` B ) <-> ( R ` G ) =/= ( 0. ` K ) ) ) |
62 |
55 61
|
mpbid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) = ( 0. ` K ) ) -> ( R ` G ) =/= ( 0. ` K ) ) |
63 |
62
|
necomd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) = ( 0. ` K ) ) -> ( 0. ` K ) =/= ( R ` G ) ) |
64 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) = ( 0. ` K ) ) -> ( R ` F ) = ( 0. ` K ) ) |
65 |
|
simpl2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) = ( 0. ` K ) ) -> F e. T ) |
66 |
1 58 2 3 4
|
trlid0b |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( F = ( _I |` B ) <-> ( R ` F ) = ( 0. ` K ) ) ) |
67 |
56 65 66
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) = ( 0. ` K ) ) -> ( F = ( _I |` B ) <-> ( R ` F ) = ( 0. ` K ) ) ) |
68 |
64 67
|
mpbird |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) = ( 0. ` K ) ) -> F = ( _I |` B ) ) |
69 |
68
|
coeq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) = ( 0. ` K ) ) -> ( F o. G ) = ( ( _I |` B ) o. G ) ) |
70 |
56 57 22
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) = ( 0. ` K ) ) -> G : B -1-1-onto-> B ) |
71 |
70 24 25
|
3syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) = ( 0. ` K ) ) -> ( ( _I |` B ) o. G ) = G ) |
72 |
69 71
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) = ( 0. ` K ) ) -> ( F o. G ) = G ) |
73 |
72
|
fveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) = ( 0. ` K ) ) -> ( R ` ( F o. G ) ) = ( R ` G ) ) |
74 |
63 64 73
|
3netr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) /\ ( R ` F ) = ( 0. ` K ) ) -> ( R ` F ) =/= ( R ` ( F o. G ) ) ) |
75 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) -> ( K e. HL /\ W e. H ) ) |
76 |
|
simp2l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) -> F e. T ) |
77 |
58 33 2 3 4
|
trlator0 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( ( R ` F ) e. ( Atoms ` K ) \/ ( R ` F ) = ( 0. ` K ) ) ) |
78 |
75 76 77
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) -> ( ( R ` F ) e. ( Atoms ` K ) \/ ( R ` F ) = ( 0. ` K ) ) ) |
79 |
54 74 78
|
mpjaodan |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( ( R ` F ) =/= ( R ` G ) /\ G =/= ( _I |` B ) ) ) -> ( R ` F ) =/= ( R ` ( F o. G ) ) ) |