Metamath Proof Explorer


Theorem simp12l

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012)

Ref Expression
Assertion simp12l
|- ( ( ( ch /\ ( ph /\ ps ) /\ th ) /\ ta /\ et ) -> ph )

Proof

Step Hyp Ref Expression
1 simp2l
 |-  ( ( ch /\ ( ph /\ ps ) /\ th ) -> ph )
2 1 3ad2ant1
 |-  ( ( ( ch /\ ( ph /\ ps ) /\ th ) /\ ta /\ et ) -> ph )