Metamath Proof Explorer


Theorem simp12r

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012)

Ref Expression
Assertion simp12r
|- ( ( ( ch /\ ( ph /\ ps ) /\ th ) /\ ta /\ et ) -> ps )

Proof

Step Hyp Ref Expression
1 simp2r
 |-  ( ( ch /\ ( ph /\ ps ) /\ th ) -> ps )
2 1 3ad2ant1
 |-  ( ( ( ch /\ ( ph /\ ps ) /\ th ) /\ ta /\ et ) -> ps )