Metamath Proof Explorer


Theorem simp13l

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012)

Ref Expression
Assertion simp13l
|- ( ( ( ch /\ th /\ ( ph /\ ps ) ) /\ ta /\ et ) -> ph )

Proof

Step Hyp Ref Expression
1 simp3l
 |-  ( ( ch /\ th /\ ( ph /\ ps ) ) -> ph )
2 1 3ad2ant1
 |-  ( ( ( ch /\ th /\ ( ph /\ ps ) ) /\ ta /\ et ) -> ph )